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SUMMARY

Hosts are protected from attack by potentially harmful enteric
microorganisms, viruses, and parasites by the polarized fully dif-
ferentiated epithelial cells that make up the epithelium, providing
a physical and functional barrier. Enterovirulent bacteria interact
with the epithelial polarized cells lining the intestinal barrier, and
some invade the cells. A better understanding of the cross talk
between enterovirulent bacteria and the polarized intestinal cells
has resulted in the identification of essential enterovirulent bacte-
rial structures and virulence gene products playing pivotal roles in
pathogenesis. Cultured animal cell lines and cultured human non-
intestinal, undifferentiated epithelial cells have been extensively
used for understanding the mechanisms by which some human
enterovirulent bacteria induce intestinal disorders. Human colon
carcinoma cell lines which are able to express in culture the func-
tional and structural characteristics of mature enterocytes and
goblet cells have been established, mimicking structurally and
functionally an intestinal epithelial barrier. Moreover, Caco-2-
derived M-like cells have been established, mimicking the bacte-
rial capture property of M cells of Peyer’s patches. This review
intends to analyze the cellular and molecular mechanisms of
pathogenesis of human enterovirulent bacteria observed in in-
fected cultured human colon carcinoma enterocyte-like HT-29
subpopulations, enterocyte-like Caco-2 and clone cells, the co-
lonic T84 cell line, HT-29 mucus-secreting cell subpopulations,
and Caco-2-derived M-like cells, including cell association, cell
entry, intracellular lifestyle, structural lesions at the brush border,
functional lesions in enterocytes and goblet cells, functional and
structural lesions at the junctional domain, and host cellular de-
fense responses.

INTRODUCTION

The intestine is divided into four anatomical segments: the du-
odenum, jejunum, ileum, and colon (1). The intestinal epithe-

lium functions as a physical and chemical barrier that protects the
host from attack by potentially harmful enterovirulent microor-
ganisms (2) (Fig. 1). To enable it to do this, the intestinal tract
consists of a complex ecosystem that combines cells of various
phenotypes lining the epithelial barrier plus the resident microbi-
ota (Fig. 1 and 2). The intestinal mucosa has a surface coating of

mucus that is secreted by the specialized goblet cells, which are
also known as mucin-secreting cells, and which creates a physical
barrier (3). Host defense systems against the unwelcome intrusion
of pathogenic enteric microorganisms include both adaptive im-
munity and innate immunity. The intestinal epithelium senses the
microbial environment in order to trigger strong cellular defense
responses when this is required, by releasing host cell signaling
molecules, such as cytokines and chemokines, which in turn trig-
ger the recruitment of leukocytes and initiate the attraction of
immune cells (4–7). Following infection by some enterovirulent
bacteria, the host engages a rapid and appropriate innate immune
response to control the enteric infection, but strong innate im-
mune responses can be deleterious for the host by inducing severe
lesions at the intestinal epithelial barrier. Toll-like receptors
(TLRs) are one of the families of pathogen recognition receptors
(PRRs), including retinoic acid-inducible gene 1 (RIG-1)-like re-
ceptors (RLRs), NOD-like receptors (NLRs), and DNA receptors
(cytosolic sensors for DNA), which are known to play a crucial
role in host defense. These PPRs recognize pathogens that express
several signature molecules, known as pathogen-associated mo-
lecular patterns (PAMPs). After recognition by PAMPs, PRRs rap-
idly trigger an array of antimicrobial immune responses but also
long-lasting adaptive immunity responses. The epithelium also
provides antimicrobial peptides (AMPs), including defensins, C-
type lectins, and cathelicidins produced by enterocytes and Paneth
cells, all of which function to rapidly kill or inactivate pathogenic
microorganisms (8, 9). In addition, autophagy, an evolutionarily
conserved process by which cell constituents are broken down and
recycled (10), also acts as a cell-autonomous defense against
intracellular pathogenic bacteria (11, 12). Recently, overlaps
between autophagy and innate immune signaling have been dem-
onstrated, including responses to intracellular pathogens and
damage-associated molecular patterns, such as the DNA-binding
nuclear protein, high-mobility group box 1 (HMGB1), and inter-
leukin-1� (IL-1�), TLRs, NLRs, and RLRs (13). Interestingly, the
autophagic adaptors called SLRs (sequestosome 1/p62-like recep-
tors) can be considered a new class of PRRs, contributing to au-
tophagic control of intracellular microbes, including Salmonella,
Listeria, and Shigella (13).

The adult human intestine contains trillions of microbes rep-
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resenting hundreds of species and thousands of subspecies which
have a predominantly symbiotic relationship with their host (14,
15). The microbial communities are segregated into three distinct
clusters referred to as “enterotypes,” each of which has a distinc-
tive species and functional composition (16). The distribution of
bacteria depends on the intestinal site; the duodenum contains far
fewer resident bacteria than the ileum, and the colon contains a
high level of anaerobic resident bacteria. The intestinal microbiota
is involved in the regulation of intestinal epithelial cell turnover, in
the structural and functional maturation of the epithelial barrier,
in the first line of host defenses against the unwelcome intrusion of
pathogenic bacteria, and in the immune modulation that plays a
significant role in maintaining intestinal immune homeostasis
(17, 18).

The mucosal surface of the intestinal tract is the largest body
surface in contact with the external environment (200 to 300 m2),
and it is lined by a simple columnar epithelium that is folded to
form a number of invaginations that increase the overall surface

area (Fig. 1). The intestinal mucosa is formed by a single layer of
columnar epithelial cells, the connective tissue of the lamina pro-
pria, and the muscularis mucosa (1). The epithelial intestinal cells
are constantly regenerated from a source of multipotent stem cells
located in the crypts of Lieberkühnn (19) (Fig. 1). The intestinal
epithelium is completely renewed every 4 to 8 days by shedding
mature epithelial cells at the tip of the villi as the result of a pro-
grammed cell death process known as “anoikis,” which occurs
when the cell is detached from the correct extracellular matrix,
thus disrupting integrin ligation at the lateral and basal domains
(20, 21). Four highly specialized cell phenotypes are present in the
intestinal epithelium: enterocytes (also known as fluid-transport-
ing cells), neuroendocrine cells, mucus-secreting cells (also
known as goblet cells), and Paneth cells (Fig. 1). Moreover, M cells
are located in the intestinal epithelium overlying mucosa-associ-
ated lymphoid tissues such as Peyer’s patches (PPs), where they act
as the antigen-sampling cells of the mucosal immune system and
play a pivotal role in the pathogenesis of several enterovirulent
microorganisms (22). During the crypt-to-villous migration, in-
testinal epithelial cells acquire a high degree of structural and
functional polarization and form three selective membrane do-
mains: the apical domain, which expresses a brush border facing
the luminal compartment; the lateral domain, which functions as
an epithelial cell-to-cell junctional domain establishing tight con-
tacts with neighboring cells and sealing the intestinal epithelial
barrier by the presence of three well-defined cell domains (the
tight junction [TJ], the adherens junction [AJ], and the desmo-
some); and the basal domain, which connects the polarized epi-
thelial cells to the basement membrane (23).

In the enterocytes, which are the major epithelial lineage of the
intestine, the regulated sorting and surface delivery of apical and
basolateral proteins lead to the selective presence of functional
proteins at each membrane domains (Fig. 1). At the enterocytic
brush border are present, for example, sucrase-isomaltase (SI),
alkaline phosphatase (AP), lactase-phlorizin hydrolase, maltase-
glucoamylase aminopeptidase N (APN), dipeptidylpeptidase IV
(DPP IV), angiotensin I-converting enzyme, �-glucosidase,
p-aminobenzoic acid peptide hydrolase, glycophosphatidylinosi-
tol (GPI)-anchored proteins, sodium/glucose cotransporter 1
(SGLT1), the GLUT1, GLUT2, GLUT3, and GLUT5 hexose trans-
porters, peptide transporter 1 (PEPT1), H�-coupled dipeptide
transporter, cholesteryl ester transfer protein, Na�/H� exchanger
(NHE) isoforms, the Cl/HCO3 exchanger DRA (downregulated in
adenoma), and some members of the aquaporin (AQP) water
channel family, transporting water as well as glycerol and other
solutes of small molecules (24, 25). At the basolateral domain are
present, for example, Na�-K� ATPase and diamine oxidase.
Moreover, membrane-bound receptors, for example, epidermal
growth factor (EGF) receptor, insulin-like growth factor-binding
proteins (IGF-BP-2, IGF-BP-3, and IGF-BP-4), vasoactive intes-
tinal peptide (VIP) receptor, protease-activated receptor 2 (PAR-
2), and nuclear hormone receptor peroxisome proliferator-acti-
vated receptor (PPAR) gamma are present and control cellular
functions.

The goblet cells produce and excrete 17 human mucin-type
glycoproteins encoded by the MUC gene family members MUC1,
MUC2, MUC3A, MUC3B, MUC4, MUC5B, MUC5AC, MUC6 to
-8, MUC10 to -13, and MUC15 to -17 (HUGO/GNC; http://www
.hugo-international.org). A cluster of four mucin genes (MUC2,
MUC5B, MUC5AC, and MUC6) encodes secreted mucins. Eight

FIG 1 Intestinal epithelial barrier. The intestinal epithelium consists of a sin-
gle layer of five phenotypes of highly polarized epithelial cells located at the
crypts and villi. The crypts contain single progenitor stem cells which divide
and differentiate in each intestinal cell phenotype during the crypt-villous cell
migration, which is responsible for epithelial cell renewal after cell death and
shedding of mature epithelial cells at the tip of the villus. Enterocytes, which
constitute the most abundant intestinal cell phenotype, express a dense brush
border composed of well-ordered microvilli facing the luminal compartment,
in which are located hydrolases and transporters involved in absorption and
secretion transcellular transporters, whereas others transporters are specifi-
cally localized at the lateral or basal membrane domains. Goblet cells produce
brush border membrane-bound mucins and secreted mucins intracellularly
packaged with large vesicles (yellow vesicles) and which after exocytosis into
the luminal compartment form a thick mucus layer overlying the epithelium.
Paneth cells located at the crypt of intestinal villi contain vesicles containing
antimicrobial peptides and proteins (red vesicles), which after secretion into
the luminal compartment exert a bactericidal effect against enteric bacterial
pathogens. Enteroendocrine cells express intracellular secretory granules con-
taining hormones and peptides (black vesicles), which after exocytosis into the
interstitial space at the basal cell domain exert paracrine and endocrine func-
tions. Yellow, red, and black arrows indicate the vectorial exocytosis processes
of vesicles or granules. In enterocytes, brown arrows indicate the F-actin- or
microtubule-dependent routes of intracellular traffic of cargo vesicles contain-
ing the functional proteins which are specifically vectorized to the apical, lat-
eral, and basal domains of the polarized intestinal epithelial cells.
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genes, MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC13,
MUC16, and MUC17, encode membrane-associated mucins. The
intracellular processing of mucins involves synthesis, oligomer-
ization in the endoplasmic reticulum, glycosylation in the cis- and
trans-Golgi networks, and storage in granules (Fig. 1) (3, 26, 27).
Intracellular small and large vesicles package the mucins, and the
viscous mucus contained in vesicles is extruded after fusion of the
vesicles and plasma membranes and the formation of a fusion
pore through a process requiring an expulsive force (Fig. 1). This
second pathway for mucin exocytosis involves the packaging and
storage of mucins in large vesicles, from which their release is
regulated by specific stimuli involving signaling molecules.

Paneth cells are pyramid-shaped, columnar exocrine cells (28).
The ultrastructure of Paneth cells shows that they have a supranu-
clear region containing numerous highly electron-dense, apically
located, eosinophilic secretory granules containing AMPs, and

other antimicrobial molecules, including lysozyme, phospho-
lipase A2, and �1-antitrypsin. AMPs are produced by Paneth cells
and by enterocytes; all rapidly kill or inactivate pathogenic micro-
organisms (8).

Only about 1% of the epithelial cells lining the intestinal epi-
thelium are enteroendocrine cells, which are subdivided into dif-
ferent cell types on the basis of their main secretory hormones
and/or signaling molecules, such as ghrelin (B/D1 cells), serotonin
(enterochromaffin cells), somatostatin (D cells), glucagon-like
peptides (GLP-1 and GLP-2) and peptide YY (PYY) (L cells), gas-
trin (G cells), cholecystokinin (CCK) (I cells), secretin (S cells),
glucose-dependent insulinotropic peptide (GIP) and xenin (K
cells), motilin (M cells), and neurotensin (N cells) (29). Enteroen-
docrine cells are conical in shape without microvilli (closed cells)
or with microvilli extending into the gut lumen (open cells). In-
tracellular secretory granules contain hormones and peptides that

FIG 2 Overview of structural and functional mechanisms by which enterovirulent bacteria cause diarrhea. The intestinal epithelium consists of a single layer of
highly polarized epithelial cells. The tight junction, a component of the apical junctional complex, seals the paracellular space between epithelial cells. Specific
structural proteins compose the cytoskeleton and microtubule networks, which play pivotal roles in the polarized organization of intestinal cells. The brush
border at the apical domain and basolateral cell domain contains proteins and transporters exerting specific intestinal functions. The intestinal epithelial barrier
plays an essential role in maintaining immune homeostasis. The intestinal microbiota resides in the lumen, outside the mucus layer. Goblet cells secrete mucins
which, combined with membrane-bound mucins, act as a physicochemical barrier and protect the epithelial cell surface. Antimicrobial peptides secreted by
Paneth cells and enterocytes are localized within the mucus layer, forming the first chemical defense system against unwanted enteric pathogens. The lamina
propria, located beneath the basement membrane, contains immune and dendritic cells. Enterovirulent bacteria use their adhesive factors to interact with the
brush border membrane by hijacking membrane-bound molecules as receptors. Structural and functional brush border injuries results in adhesin/receptor
interaction or T3SS-translocated bacterial effectors activating cell signaling pathways that lead to the cytoskeleton-dependent attachment/effacement (A/E)
lesion of brush border microvilli or shedding of microvilli, which in turn results in the disappearance of brush border-associated proteins exerting specific
intestinal functions. On the other hand, secreted cytotonic toxins, by binding to membrane-bound receptors, by endocytosis and retrograde traffic, or by
T3SS-translocated bacterial effectors, activate signaling pathways for deregulating membrane-associated proteins controlling nutrient transport or functioning
as ions and water channels. Moreover, secreted cytotoxic toxins after endocytosis induce cytoskeleton- or caspase-dependent cell death. In addition, via
T3SS-translocated bacterial effectors or secreted toxins, enteric pathogens also target the junctional domain of polarized epithelial cells, inducing structural and
functional lesions at the tight junctions and leading to a fault in the intestinal epithelial barrier. Invasive enterovirulent bacteria cross the epithelial cell membrane
via a massive membrane rearrangement, penetrate into the host cells, and pursue sophisticated intracellular lifestyles within vacuoles containing bacteria. Other
enteroinvasive bacteria, after escape from the vacuole, engage in actin-based movements within the cell cytoplasm for the penetration of neighboring cells via
bacterium-induced transpodia. Adhering and invading enterovirulent bacteria trigger cellular defense responses, including, for example, the enhanced produc-
tion/secretion of mucus and the production of proinflammatory cytokines and chemokines activating, in turn, immune cells of lamina propria. Moreover, some
enterovirulent bacteria act to produce a loss of the first line of intestinal defenses by modifying the resident microbiota composition or altering the secretory
process of mucus from goblet cells.
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are exocytosed in response to stimulation into the interstitial
space from the basal cell domain (Fig. 1). Hormones and peptides
act locally on neighboring cells (paracrine function), on neurons
located in their proximity (neuronal function), or on distant tar-
gets, via the capillary networks of the lamina propria (endocrine
function). Enteroendocrine cells secrete hormones and peptides
that are well known for their effect on food intake and appetite, the
regulation of glucose homeostasis, gut motility, and various other
physiological functions.

The impermeability of the intestinal epithelium is structurally
and functionally ensured by TJs, AJs, and the desmosome (23). TJs
are the most apical intercellular protein complexes, formed by the
interaction of transmembrane proteins claudins and occludin
with the actin cytoskeleton via the zonula occludens 1 (ZO-1),
ZO-2, and ZO-3 proteins. In addition, the transmembrane junc-
tional adhesion molecule in the TJs is engaged in homophilic or
heterophilic binding with other adhesion molecules such as integ-
rins. Beneath the TJs, the multiprotein complexes forming the AJs
are composed of transmembrane protein E-cadherin connected to
intracellular components such as p120 catenin, �-catenin, and
�-catenin linked to the actin cytoskeleton. Desmosomes localized
beneath AJs are junctional complexes of transmembrane proteins,
including desmoglein and desmocollin, which interact with des-
moplakin linked to intermediate filaments. Functionally, TJs are
responsible for sealing the intercellular space, and they act as a
“gate” regulating the paracellular passage of particles and solutes,
whereas the AJs and desmosomes act as adhesive bonds between
intestinal epithelial cells, conferring mechanical strength on the
intestinal epithelial barrier. Moreover, TJs also act as a “fence”
separating the apical and basolateral membrane domains of po-
larized intestinal cells, thereby segregating the cell surface proteins
and the lipids in each of the membrane domains. In addition,
there is recent evidence that the enteric nervous system plays a role
in modulating the epithelial barrier functions of the intestine (30).

Enterovirulent bacteria execute a prodigious array of complex
functions in order to survive, multiply, and disseminate within
host intestinal epithelial cells. To do this, genes coding for viru-
lence factors are present in large clusters of virulence genes known
as pathogenicity islands (PAIs), which are either present on plas-
mids or integrated into the chromosome. Each pathovar has de-
veloped specific mechanisms for attachment, hijacking, and sub-
verting the host cell machinery. For example, interactions between
virulence factors and host cell proteins activate host cell signaling
pathways controlling the structural organization of the brush bor-
der cytoskeleton or regulating the polarized organization of intes-
tinal epithelial cells. Moreover, enterovirulent bacteria target host
cell signaling pathways regulating the intracellular traffic of func-
tional proteins or the activities of membrane-associated func-
tional proteins and transporters. In addition, host cell signaling
pathways regulating the structural organization and the functions
of the junctional domains of polarized intestinal epithelial cells are
subverted by some enterovirulent bacteria, which in turn alters the
barrier function of the intestinal epithelium. In this review, we
analyze the molecular and cellular mechanisms of virulence devel-
oped by enterovirulent bacteria that have been identified using
cultured, fully differentiated human colon carcinoma cell lines,
subpopulations, and clone cells expressing the functional and
structural characteristics of mature enterocytes, goblet cells, or M
cells.

DIFFERENTIATED HUMAN COLON CANCER CELL LINES

Investigation of the mechanisms of pathogenicity of enteroviru-
lent bacteria has long been complicated by the fact that human
enterocytes and goblet cells are difficult to isolate and maintain for
a long time in culture and tend to give rather variable results,
depending on the particular donor. Since 1983, human colon car-
cinoma cell lines that are able to express the functional and struc-
tural characteristics of mature enterocytes or goblet cells in culture
have been established (31), which has considerably facilitated the
in vitro study of microbial pathogenesis. These cell lines were ini-
tially used to investigate basic questions related to the organiza-
tion and functions of polarized human intestinal cells (32). When
fully differentiated in culture, these cells display a polarized orga-
nization, form highly regulated junctional domains, and form a
cell monolayer that physically and functionally mimics an intesti-
nal epithelium barrier. They functionally mimic an intestinal ep-
ithelium barrier since each domain of these cells specifically ex-
presses major differentiation-associated proteins that support
specific intestinal functions. The parental fully differentiated hu-
man colon cancer cell lines and cell subpopulations and clones
have been used since 1987 as models for investigating the cellular
and molecular mechanisms by which enteric microbial pathogens
hijack membrane-associated proteins, signaling pathways, and in-
tracellular traffic functions, thus promoting structural and func-
tional lesions and host cellular responses by enterocytes or mucin-
secreting cells. An analysis of the literature reveals that some of the
studies describing various different mechanisms of microbial en-
teric pathogenesis have been conducted using cultured human
colon cancer cell lines that were not appropriately cultured. For
examples, many studies have been conducted with parental
HT-29 cells, which are wrongly described as “enterocyte-like
cells”; in culture these cells formed multilayers of permanently
undifferentiated cells which never expressed the polarized organi-
zation and the functional characteristics of fully differentiated ep-
ithelial cells that line the intestinal epithelium. For the parental
Caco-2 cell line or clones, several studies indicating “enterocyte-
like cells” have been conducted with cells cultured for 3 to 5 days,
after which the cells either remain isolated or assemble to form
islands of undifferentiated, nonpolarized cells. In other cases,
Caco-2 cells have been cultured for 7 to 10 days, and even though
they formed a confluent cell monolayer, the cells were in fact at an
early state of cell differentiation in which the brush border was not
well formed and the cells had not achieved functional differentia-
tion. We therefore start this review by summarizing the structural
and functional characteristics of human colon cancer cell lines
that when cultured properly express the structural and functional
characteristics of fully differentiated polarized epithelial cells lin-
ing the small intestine.

Differentiated Enterocyte-Like HT-29 Cell Subpopulations
and Clones

In 1972, J. Fogh (Sloan Kettering Institute for Cancer Research,
Rye, NY) (33, 34) isolated and cultured cells from human colonic
adenocarcinomas. The parental colon cancer HT-29 cell line (33,
35) is composed mainly of undifferentiated cells, with a small
minority of differentiated cells (�3 to 5% of total cells) (Table 1).
Depending on the metabolic stresses exerted, such as glucose de-
privation or its replacement by different substrates or culture in
the presence of drugs, after an initial phase during which nearly all
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the undifferentiated cells die, the surviving cells that have resisted
the stress consist of the small number of differentiated cells that
were present at low levels in the parental HT-29 cell line. Several
subpopulations of absorptive HT-29 cell subpopulations have

been established (Table 1). The first enterocyte-like subpopula-
tion of HT-29 cells, designated HT-29 Gal�, was obtained by a
selection culture process in which galactose replaces glucose in the
culture medium (36). A second enterocyte-like subpopulation of

TABLE 1 Characteristics of fully differentiated colon cancer cell lines, cell subpopulations, and clonesa

Cell line, subpopulation, or
clone Reference(s) Cell characteristics Expressed intestinal functions

HT-29 Gal� and HT-29 Glc� 36 Enterocyte-like cells forming in
culture monolayers of
polarized cells

Expression of a well-ordered brush border endowed by hydrolases such as
SI, APN, DPP IV, and AP (36, 37)

HT-29 Rev Glc�/� 38 Enterocyte-like cells forming in
culture monolayers of
polarized cellsb

Expression of a well-ordered brush border endowed by hydrolases such as
SI, APN, DPP IV, and AP (38, 42), ATPase activities (46), CEA (45),
chloride secretion (47, 48), oligopeptide transport (49), Na�/glucose
cotransport (50); presence of mature junctional complexes (39);
receptor for VIP (52, 53) and PAR2 (51); Presence of AMPs (54)

HT-29-D4, HT-29-D9 39
HT29.74 40
HT-29-18-C1 41
Clone HT-29.19E 42
HT29 clone 13 43
Clone HT-29.cl16E 42 Homogeneous subpopulations

of goblet cells forming in
culture monolayers of
polarized cells producing
mucins and secreting
mucusb

Expression of brush border endowed by hydrolases such as SI, APN, and
DPP IV (38); presence of MUC2, MUC5AC, and MUC6 secreted
mucins and MUC1, MUC3, and MUC4 membrane-associated mucins
(62–68); presence of intracellular vesicles containing mucus; presence
of two secretory pathways of mucins, a constitutive pathway and a cell
signaling-regulated pathway (27)

HT29-18N2 clone 41, 60
HT29-MTX 38
HT29-SB 59

HT29-FU 61 Mixed population of
enterocyte-like cells (90%)
and randomly distributed,
mucin-secreting cells (10%)b

Expression of brush border endowed by hydrolases such as SI and DPP IV
(61); presence of MUC2 and MUC5AC secreted mucins and MUC4
membrane-associated mucin (61); presence of AMPs (54)

Caco-2 82 Spontaneously differentiate in
culture in enterocyte-like
cells forming monolayers of
polarized cellsc

Expression of brush border endowed by functional proteins such as SI,
lactase, AP, APN, and DPP IV (69, 108), SGLT1, GLUT1, GLUT2,
GLUT3, and GLUT5 (123), hPEPT1 (126), H�-coupled dipeptide
transporter (127), NHEs (128, 129), DRA (130), MCT1 (131), Na�-
K�-ATPase (110), diamine oxidase (138), cholesteryl ester transfer
protein (132), PAR2 (51), AQP3 and AQP10 (133–137), and receptors,
including the epidermal growth factor receptor (139), the insulin-like,
growth factor-binding proteins (IGF-BP-2, IGF-BP-3, and IGF-BP-4)
(139), VIP receptor (52), and PPAR gamma (140); mechanisms of
sorting and surface delivery of apical and basolateral functional
proteins (103, 104); in-and-out efflux systems controlling the intestinal
transport of drugs (141); positive TER in cell monolayers and
expression of TJ proteins ZO-1, -2, and -3, occludin, and claudins
claudin-1, -2, -3, -4, -12 but not claudin-5; formation of fluid-filled,
blister-like domes resulting from both the paracellular and transcellular
pathways of ion and water transport and which determine the net
apical to basolateral vectorially transported water (142); presence of
AMPs (54, 143)

Clones Caco-2BBe 1 and 2 86 Spontaneously differentiate in
culture in enterocyte-like
cells forming monolayers of
polarized cellsc

Clone 40 83

Clones Caco-2/1 to 16 84

Clone cl1 88

Clone Caco-2/AQ 89

Clone NGI3 90

Clones 1, 20, and 21 91

26 clones from late or early
passages, including
Caco-2/TC7

94

Caco/B7 92

Clones NCL-1 to -12 93

T84 153 Spontaneously differentiate in
culture in polarized colonic
cellsd

Expression of brush border endowed by hydrolases such as SI, DPP IV,
and CEACAMs; regulated chloride secretion (157), NHE-1, -2, and -4
(158), Na�/K�/2Cl� transport (159), chloride and HCO3

� secretion
(160), ENT1 and ENT2 (161), the CFTR chloride channel (162, 163),
and production of exosomes (164); High level of positive TER,
resulting in tightly formed and highly regulated functional TJs
expressing ZO-1, occludin, and claudins (156); PMNL transmigration

a Abbreviations: SI, sucrase-isomaltase; APN, aminopeptidase N; DPP IV, dipeptidylpeptidase IV; AP, alkaline phosphatase; CEACAMs, carcinoembryonic antigen cell adhesion
molecules; CEA, carcinoembryonic antigen; VIP, vasoactive intestinal peptide; PAR2, protease-activated receptor 2; PEPT1, H�/epycotransport system; NHEs, Na�/H� exchanger
isoforms; DRA, downregulated in adenoma Cl/HCO3 exchanger; CFTR, cystic fibrosis transmembrane conductance regulator chloride channel; LTP-I, cholesteryl ester transfer
protein; PPAR, nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR); SGLT1, GLUT1, GLUT2, GLUT3, and GLUT5, hexose transporters; ENT, Na�-
independent equilibrating nucleoside transporters; PMNLs, polymorphonuclear leukocytes. It is important that the cells are maintained in the laboratory under strict conditions of
culture: low density of seeding (12 � 103 cells/cm2), 6-day passage frequency, use of DMEM containing the appropriated glucose concentration (as indicated for each line)
supplemented with appropriated percentage of heat-inactivated (56°C, 30 min) fetal bovine serum (as indicated for each line) and with or without nonessential amino acids (as
indicated for each line), and culture in a 10% CO2–90% air atmosphere. The medium was changed at 24 or 48 h.
b DMEM, 25 mM glucose, and 10% calf fetal serum at 37°C in a humidified 10% CO2–90% air atmosphere for 21 days in culture.
c DMEM, 25 mM glucose, 20% inactivated fetal calf serum, and 1% nonessential amino acids at 37°C in a 10% CO2–90% air atmosphere for 15 days in culture.
d A 1:1 (vol/vol) mixture of Dulbecco-Vogt modified Eagle medium and Ham’s F-12 medium supplemented with 6% fetal calf serum (pH 7.5) at 37°C in a 10% CO2–90% air
atmosphere for 15 days in culture.
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HT-29 cells, designated HT-29 Glc� cells, was established from
the parental HT-29 cell line by glucose deprivation during culture
(37). The enterocyte-like subpopulation designated HT-29 Rev
Glc�/�, which maintains the differentiation characteristics per-
manently at subconfluence, was established after switching HT-29
Rev Glc� cells back into a standard glucose-containing medium
(38) (Fig. 3). Other enterocyte-like cell subpopulations, desig-
nated HT-29-D4 (39), HT29.74 (40), and HT-29-18-C1 (41), have
also been established. From the parental HT-29 cell line, two per-
manently differentiated clonal cell lines composed of absorptive
cells have been established and designated HT-29.19E, obtained
after sodium butyrate treatment (42), and HT29 clone 13, ob-
tained after adenosine deprivation using adenosine deaminase
(43). All the enterocyte-like HT-29 cell subpopulations or cell
clones expressed a well-ordered apical brush border expressing
human functional proteins found in the enterocytes of the human
small intestine, a tight junctional domain, and a basal domain (31)
(Fig. 3). Polarized HT-29 cell subpopulations and clones have
been used to investigate cell polarization (44) and expression of
several differentiation-associated intestinal functional proteins,
including SI, APN, DPP IV, and AP (36–38, 42), carcinoembry-
onic antigen (CEA) (45), ATPase activities (46), chloride secretion
(47, 48), oligopeptide transport (49), Na�/glucose cotransport

(50), PAR2 (51), receptor for VIP (52, 53), and AMPs (54)
(Table 1). They also exhibit a controlled production or cellular
effects of cytokines such as interleukin-4 (IL-4) and IL-13 (55),
tumor necrosis factor alpha (TNF-�) (56), IL-1 (57), and IL-8
(58). In contrast to the Caco-2 and T84 cell lines, these perma-
nently fully differentiated, fluid-transporting HT-29 subpopula-
tions have rarely been used to study the pathogenicity mecha-
nisms of enteric bacteria.

Differentiated Mucin-Secreting HT-29 Cell Subpopulations
and Clones

Depending on the culture selection system used, several mucus-
secreting HT-29 subpopulations have been selected and mucus-
secreting HT-29 cell clones have been established from the paren-
tal HT-29 cell line. The first permanently differentiated clonal cell
line, HT-29.cl16E, was a homogeneous, mucin-secreting, intesti-
nal cell population that emerged from the parental HT-29 cell line
after sodium butyrate treatment (42). A second mucus-secreting,
clonal derivative (HT29-SB) has also been established (59). Grow-
ing the parental HT-29 cell line in the absence of glucose results in
the selection of homogeneous columnar cells with the typical gob-
let cell morphology, which have been designated the HT29-18N2
clone (41, 60). Adaptation of the parental HT-29 cell line to lethal
concentrations of methotrexate (MTX) (38) and 5-fluorouracil
(FU) (61) has been shown to result in the emergence of subpopu-
lations of cells that are all stably committed to differentiation (38,
61). The HT29-MTX cell subpopulation is a homogeneous sub-
population of goblet cells that secretes the mucus and mucins of
gastric and colonic immunoreactivity (Fig. 4A to G). In contrast,
the cells in the HT29-FU cell subpopulation are all differentiated
and exhibit 2 phenotypes: most are enterocyte-like cells, with a few
randomly distributed mucin-secreting cells (61) (Fig. 4H and I).
Both secreted and membrane-bound intestinal mucins have been
characterized in HT29-MTX and HT29-FU cell subpopulations,
since MUC2 and MUC4 were highly expressed in HT29-FU and
MUC3 and MUC5AC were highly expressed in HT29-MTX (62–
68). The mucin-secreting HT-29 cell clones and subpopulations
have been used to investigate the regulation of mucus transport
(69–78) and the functionality of human intestinal mucin-secret-
ing cells (26, 27). Moreover, mucin-secreting HT-29 cell sub-
populations and clones have been used to investigate the role of
human mucins in bacterial pathogenesis (62, 63, 79–81). Entero-
cytic cells in fully differentiated HT29-FU cells expressed AMPs
PR-39 and cecropin P1 (54).

In some pathogenic or commensal intestinal microbiota bacte-
ria and parasites, the mucus gel can serve at least two functions.
First, it can be a source of nutrients for bacterial growth, thus
increasing the colonization of the intestine by the adhering bacte-
ria, which have the ability to survive and multiply in the outer
areas of the mucus layer. Second, the mucus coat overlying the
microvillous surface contributes to the host defenses by prevent-
ing bacterial or parasite adhesion or invasion and the binding of
toxins to the intestinal brush border.

Differentiated Enterocyte-Like Parental Caco-2 Cell Line
and Clones

The parental colon cancer Caco-2 cells were established from pas-
sage 14 of the cell line obtained from J. Fogh (33, 34). The cells
differentiate spontaneously in culture, characterized by the ap-
pearance of structural and functional properties of the enterocytes

FIG 3 Fully differentiated human colon cancer HT-29 Glc�/� cell subpopu-
lation expressing the structural and functional characteristics of mature en-
terocytes of the small intestine. (A and B) Scanning electron microscopy ex-
amination shows the presence of a dense and well-organized brush border. (C)
Transmission electron microscopy examination shows the well-organized mi-
crovilli. (D) Confocal laser scanning microscopy examination of SI immuno-
fluorescence labeling shows the mosaic pattern of expression (x-y section). (E)
Confocal laser scanning microscopy examination of SI immunofluorescence
labeling shows the specific expression of hydrolase at the apical domain (x-z
section). (F) Lack of SI immunofluorescence labeling in confluent undifferen-
tiated parental HT-29 cells. Confluent cells at 21 days in culture are shown.
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of the small intestine (35, 82) (Fig. 5). Several clones of Caco-2
cells have been established: clone 40 (83), clones Caco-2/1 to Caco-
2/16 (84), clones Caco-2BBe 1 and 2 (also referenced as C2BBe 1 and
2) (85–87), clone cl1 (88), clone Caco-2/AQ (89), clone NGI3 (90),
clones 1, 20, and 21 (91), Caco/B7 (92), and clones NCL1 to -12
(93). Moreover, 26 Caco-2 clones have been isolated from early
and late passages of parental Caco-2 cells, 8 clones from passage 29
and 18 clones from passage 198, including the most commonly
used Caco-2/TC7 clone (94). Importantly, it should be noted that
the fully differentiated Caco-2 cells and Caco-2 clones, although
they are of colonic origin, express apical and basolateral proteins
and display the specific functions of the mature enterocytes of the
small intestine (31). In culture, the fully differentiated parental
Caco-2 cell line and its clones form a cell monolayer that mimics
the intestinal epithelial barrier (Fig. 5B). The differentiation pro-
cess in the culture of Caco-2 cells is growth related; exponentially
dividing cells are undifferentiated, and differentiation starts at
confluence when the cells stop dividing (Fig. 5I) and closely mim-
ics the differentiation of enterocytes that occurs along the crypt-
villus axis of the small intestine.

Parental Caco-2 cells and clones provide the best model for
investigating the cell polarization that develops after confluence in
culture and the roles of structural proteins, such as actin, fodrin,
fimbrin, villin, myosin I and II, and plastin-1, in the structural and
functional brush border assembly (Fig. 5B to I) (85–87, 95, 96).
For intestinal epithelial cell polarity to develop, there is a complex

sorting and cargo-trafficking machinery that carries out the intra-
cellular transport of some functional proteins so that they can be
directly and efficiently targeted to the basolateral membrane,
whereas the apical functional proteins reach the apical microvil-
lous membrane by several different routes (97). Some proteins are
directly targeted to the apical microvillous membrane, whereas
others are addressed to the microvillous membrane after a transi-
tional stage in the lateral domain. In addition, a subapical cell
compartment seems to function as a docking platform for vesicles
containing functional proteins (98). Parental Caco-2 cells and
clones have also been used to identify the mechanisms underlying
the sorting and surface delivery of apical and basolateral proteins
in human enterocytes (99–107) and to find out how functional
intestinal proteins take their place in cell membrane domains,
including brush border-associated functional proteins such as SI
(82, 84, 86, 90, 94, 100, 106, 108–114), AP (110, 111), lactase-
phlorizin hydrolase (108, 115), maltase-glucoamylase (108), APN
(90, 108, 111), DPP IV (82, 90, 100, 108, 116–121), angiotensin
I-converting enzyme (108), �-glucosidase (122), p-aminobenzoic
acid peptide hydrolase (108), SGLT1, GLUT1, GLUT2, GLUT3,
and GLUT5 (123–125), PEPT1 (126), H�-coupled dipeptide
transporter (127), NHEs (128, 129), Cl/HCO3 exchanger DRA
(130), monocarboxylate transporter 1 (MCT1) (131), cholesteryl
ester transfer protein (132), AQP3 and AQP10 (133–137), Na�-
K�ATPase (110), and diamine oxidase (117, 138) (Table 1)
(Fig. 5G to I). Parental cells and clones have been also used to

FIG 4 Fully differentiated mucus-secreting human colon cancer HT29-MTX and HT29-FU cell subpopulations expressing the structural and functional
characteristics of intestinal mucus-secreting goblet cells. (A) Transmission electron microscopy examination of confluent fully differentiated HT29-MTX cells
shows the polarized organization of the cells, the brush border, and the intracellular dense vesicles containing packaged mucins. (B) Transmission electron
microscopy shows the intracellular vesicles containing packaged mucins near the apical domain. (C) Scanning electron microscopy examination shows the brush
border of HT29-MTX cells after elimination of the mucus gel. (D) Scanning electron microscopy shows the secretion of mucus at the cell surface. (E and F)
Scanning electron microscopy examination of HT29-MTX cells shows the dense mucus gel at the cell surface. (G) Confocal laser scanning microscopy
examination shows the immunofluorescence labeling of secreted MUC5AC mucin in HT29-MTX cells (x-y section). (H) Scanning electron microscopy
examination of postconfluent HT29-FU cells shows mucus secreted by a randomly distributed mucus-secreting HT29-FU cell and adjacent enterocyte-like
HT29-FU cells. (I) High-magnification micrograph shows the dense and well-organized brush border in HT29-FU enterocyte-like cells. Confluent cells at 21 days
in culture are shown. The arrows in A indicate the intracellular vesicles containing mucus.
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study the regulatory functions of membrane-bound receptors, in-
cluding EGF receptor (139), IGF-BP-2, IGF-BP-3, and IGF-BP-4
(139), VIP receptor (52), PAR2 (51), and PPAR gamma (140).
Moreover, Caco-2 cells and clones have been used to investigate
the in-and-out efflux systems controlling the intestinal transport
of drugs (141).

Parental Caco-2 cells and clones forming a monolayer at the
fully differentiated state expressed a well-organized and regulated
cell-to-cell junctional domain including TJs formed by ZO-1, -2,
and -3, occludin, and claudin-1, -2, -3, -4, -12, but not claudin-5
(Fig. 5B, J, and K). In addition, the fully differentiated Caco-2 cell
monolayer forms fluid-filled, blister-like domes that are highly
dynamic structures formed as the result of both the paracellular
and transcellular pathways of ion and water transport and which
determine the net apical-to-basolateral vectorially transported
water (142) (Fig. 5L and M). Consistent with the production of
AMPs by enterocytes (8, 9), parental fully differentiated Caco-2
cells express human cathelicidin LL-37/human cationic antimi-
crobial protein 18 (LL-37/hCAP18) mRNA and protein and
showed positive immunoreactivity for lysozyme, �1-antitrypsin,
and AMPs PR-39 and cecropin P1, whereas fully differentiated
T84 cells do not (54, 143). The parental fully differentiated Caco-2

cell line and clones have been extensively used to investigate the
cellular and molecular mechanisms by which human enteroviru-
lent bacteria and enteric viruses create structural and functional
cellular lesions and trigger cellular immune responses in the intes-
tinal barrier. Moreover, fully differentiated Caco-2 cells and their
clones have been used to investigate how bacterial species in the
human intestinal microbiota control the pathogenesis of human
enteropathogens.

Parental Caco-2 cells are known to be a homogeneous entero-
cyte-like cell line, but surprisingly, several reports have docu-
mented the presence of MUC genes and MUC proteins, including
the MUC1F gene (144) and MUC1 mucin (145–148), the MUC2
gene (145), the MUC3A and MUC3B genes (145, 149), the MUC4
gene (150) and MUC4 mucin (151), and the MUC5B gene (152)
and MUC5B mucin (148). Interestingly, the fully differentiated
NCL2 clone recently isolated from the parental Caco-2 cell line
shows the homogeneous presence of cells apically secreting a gly-
cocalyx-like or mucin-like material (93).

Differentiated Colon Crypt T84 Cell Line

The T84 cell line is composed of colonic epithelial cells derived
from a human colonic carcinoma (153). The cells were grown to

FIG 5 Human colon cancer Caco-2/TC7 clone cells expressing the structural and functional characteristics of mature enterocytes of the small intestine. Scanning
electron microscopy micrographs show an undifferentiated cell at 3 days in culture (A), the short microvilli at the dense brush border in postconfluent
cells at 10 days in culture (C), and the well-organized and dense brush border in postconfluent cells at 15 days in culture (D and E). (B) Transmission electron
microscopy micrograph shows the polarized organization of postconfluent cells forming a monolayer at 15 days in culture. (F) Transmission electron microscopy
micrograph shows the well-ordered brush border microvilli in postconfluent cells at 15 days in culture. (G and H) Confocal laser scanning microscopy
examination shows the immunofluorescent labeling of two brush border-associated functional proteins (x-y section). (G) Mosaic pattern of expression of
sucrase-isomaltase (SI). (H) Typical punctuate distribution of the glycophosphatidylinositol-anchored glycoprotein decay-accelerating factor (DAF). (I) In-
crease in expression of SI immunofluorescence labeling and sucrase enzyme activity as a function of days in culture. (J and K) Confocal laser scanning microscopy
examination shows the immunofluorescent labeling of TJ-associated ZO-1 localizing at the cell-to-cell contact of the cell monolayer (x-y section in panel J and
x-z section in panel K). (L and M) Confocal laser phase-contrast microscopy micrograph (L) and transmission electron microscopy micrograph (M) showing a
fluid-forming dome in the cell monolayer.
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confluence as a monolayer attached to the surface of the culture
dish or permeable supports. These cells were highly polarized
(Fig. 6A), with short microvilli on the apical membrane facing the
medium (Fig. 6B and C), a basolateral membrane, and TJs and
desmosomes between adjacent cells (Fig. 6C). Fully differentiated
cells expressed human functional intestinal proteins at the brush
border (Fig. 6D) and structural and functional proteins regulating
paracellular passage at the TJs (Fig. 6E) (Table 1). Mounted in
Ussing chambers, this cell line provides an excellent model system
for studying electrolyte transport processes and the functions of
voltage-dependent channels by electrical circuit analysis and
membrane-associated vectorial cell transport systems (154–156).
Fully differentiated T84 cells have been used to investigate the
regulation of chloride secretion (157), NHE-1, -3, and -4 (158),
Na�/K�/2Cl� transport (159), chloride and HCO3

� secretion
(160), Na�-independent equilibrating nucleoside transporters
ENT1 and ENT2 (161), the cystic fibrosis transmembrane con-
ductance regulator (CFTR) chloride channel (162, 163), and pro-
duction of exosomes (164). Since they express a high level of trans-
epithelial electrical resistance (TER) (154–156), T84 cells provide
the best model to investigate the impact of enterovirulent bacterial
pathogens and enteric viruses and bacterial toxins on the struc-
tural organization of TJs and the transport functions of human
colonic cells. The T84 cell line offers the best model for investigat-
ing how enterovirulent pathogens induce the transmigration of
polymorphonuclear leukocytes (PMNLs) across the intestinal
barrier and the resulting cellular consequences (165, 166). The
regulation of the PMNL transmigration across T84 cell monolayer
has been described in detail (167–178). Moreover, several studies
have analyzed the consequences of the transmigration of PMNLs
for the polarized cells (179–182) and the changes seen in the
PMNLs themselves (183–187).

The presence of the MUC1, MUC2, MUC3, and MUC5AC
genes (188–192) and the regulation of MUC gene expression and
the production or secretion of mucins in T84 cells (190–198) have
been described. It is noteworthy that unlike the case for the HT-29
and Caco-2 cell lines, no clone or subpopulation has so far been
established from the parental T84 cell line.

Parental Nondifferentiated Ileocecal Adenocarcinoma HCT-
8 Cell Line and Subpopulations of Partially Differentiated
HCT-8 and Fully Differentiated HCT8-MTX Cells

The parental human ileocecal adenocarcinoma HCT-8 cell line
(199) and variants (HCT-8, HCT-8R, HCT-8 Nu 1, HCT-8R Nu
1, HCT-8 Nu 2, and HCT-8R Nu 2) (200) express the CEA as fully
differentiated HT-29 cell subpopulations and clones and as paren-
tal fully differentiated Caco-2 cells. Parental HCT-8 cells cultured
at postconfluence (in Eagle’s minimal essential medium supple-
mented with 2 mM glutamine and 10% fecal calf serum or in
Dulbecco modified Eagle’s medium [DMEM] [25 mM glucose]
supplemented with 10% inactivated fetal calf serum and cultured
at 37°C in a 10% CO2–90% air atmosphere for 21 days in culture
with culture medium changed daily) form a heterogeneous layer
with large clusters of piled-up, flat cells and rounded cells alter-
nating with small areas of more spread-out cells in which the cells
are attached to each other by poorly organized junctional com-
plexes (Fig. 7A to C) (201). Most of the cells were not differenti-
ated, since villin and DPP IV were found at levels corresponding to
unpolarized membrane expression, but a small proportion of the
isolated cells or of the cells in clusters exhibited poorly organized
cell extensions. Moreover, it has been found that ZO-1 is distrib-
uted scantly and anarchically in these HCT-8 cells organized in
clusters. When cultured on permeable matrices and at late post-
confluence stages, parental nondifferentiated HCT-8 cell layers

FIG 6 Fully differentiated human colon cancer T84 cell line expressing the structural and functional characteristics of colonic cells. (A) Scanning electron
microscopy micrograph shows the well-organized brush border with short microvilli. (B and C) Transmission electron microscopy micrograph shows the
polarized organization of the cells forming a monolayer and the apical brush border composed of short microvilli. Arrows indicate TJs. (D) Confocal laser
scanning microscopy micrograph shows the mosaic pattern of expression of immunolabeled functional brush border-associated dipeptidyl-peptidase IV (DPP
IV) (x-y section). (E) Confocal laser scanning microscopy examination of immunofluorescence labeling of TJ-associated occludin protein shows the expression
at the cell-to-cell contact of confluent cells (x-y section). Confluent cells at 15 days in culture are shown. (Panels A and C courtesy of P. Hofman, reproduced with
permission.)
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displayed a low TER (202, 203). HCT-8 variants, such as HCT-8R
cells, appeared to be entirely pleomorphic, and colonies contained
fusiform, epithelial-like cells without junctional complexes and
microvilli that appeared to be irregular in length, shape, and spac-
ing. Parental HCT-8 cells have been grown in microgravity using a
rotating-wall vessel (RWV) apparatus (204). After 10 days in cul-
ture, layered HCT-8 cell aggregates (HCT-8 organoids) devel-
oped, showing a villus-like cell organization. Interestingly, the
cells in the HCT-8 organoids displayed a shape characteristic of
polarized cells, indicating greater cellular differentiation than
conventionally grown HCT-8 cells. Moreover, the cells in the up-
per part of the HCT-8 organoids developed short and not well-
organized microvilli, unlike those observed in enterocyte-like pa-
rental Caco-2 cells and clones and HT-29 subpopulations and
clones but resembling those present in T84 cells. Consistent with
the better polarization and the presence of sparse microvilli, the
cells localizing in the upper part of HCT-8 organoids apically ex-
pressed villin and expressed the TJ-associated ZO-1 protein in a
more organized fashion than the parental HCT-8 cells. Parental
HCT-8 cells have been used mainly to investigate drug cytotoxic-
ity, resistance to antitumor agents, and the deregulated functions
in cancer cells. Despite the fact that parental HCT-8 cells do not
display the structural and functional characteristics of entero-
cytes, they have been used to study the interactions of a small
number of enterovirulent bacteria with human intestinal epithe-
lial cells (205–216) and bacterial toxin effects (217–219).

An HCT-8 cell subpopulation (HCT8-MTX) has been obtained
by culturing these cells in the presence of MTX (201). In contrast
to parental nondifferentiated HCT-8 cells, HCT8-MTX cells

formed a homogeneous cell monolayer of polarized cells express-
ing TJs, with short and ordered microvilli forming a brush border
at the apical cell surface (Fig. 7D and E) and with a linear expres-
sion of villin, DPP IV, CEA and MUC1 corresponding to expres-
sion at a polarized membrane. Moreover, HCT8-MTX cells, like
fully differentiated Caco-2 cells, formed a number of domes which
are indicative of a cell monolayer with vectorial ion transport
properties.

Coculture Models

Peyer’s patches (PPs), also known as follicle-associated epithe-
lium, are areas in the mammalian gut mucosa consisting of aggre-
gated and isolated lymphoid follicles separated from the intestinal
lumen by a single layer of columnar epithelial cells. In these ran-
domly distributed and particular intestinal cell areas, a relatively
small number of highly specialized epithelial cells, known as M
(microfold or membranous) cells, have been identified (22, 220).
The phenotype of human M cells has long remained elusive due to
the difficulty of isolating these sparsely occurring intestinal cell
areas. M cells play a central role in initiating mucosal immune
responses by transporting intact foreign antigens and commensal
bacteria into the underlying lymphoid tissue. In this way, the mu-
cosal immune system encounters the virtually limitless variety of
antigens that enter the body through the gut mucosa and reacts by
mounting specific mucosal and systemic immune responses. M
cells are also major adhesion and invasion sites for several invasive
enteric pathogens (221). Moreover, after crossing the follicle-as-
sociated epithelium, the invading bacteria face phagocytic cells,
including the macrophages that are present in the follicle dome.
For several enteroinvasive pathogens, the outcome of infection
depends on the capacity to survive in the presence of macrophages
or within macrophages after phagocytosis and how these invasive
species do this (222).

A model of M-like cells has been obtained by coculturing freshly
isolated BALB/c mouse PP lymphocytes with parental fully differ-
entiated Caco-2 cells, triggering the phenotypic conversion of
Caco-2 cells into cells that express the morphological and func-
tional properties of M cells (223, 224). A more stable model of
M-like cells has been obtained by coculturing fully differentiated
parental Caco-2 cells (225) or Caco-2 cl1 clone cells (226) with the
human Burkitt’s lymphoma Raji B cell line. Another model has
been constituted from fully differentiated Caco-2 cl1 clone cells
cultured in the presence of freshly isolated human blood lympho-
cytes (227). The mechanism(s) by which the fully differentiated
Caco-2 cells are converted into M cell-like cells has not yet been
entirely elucidated. Caco-2 cl1 cells cocultured with mouse PP
lymphocytes display much lower levels of SI in their apical mem-
branes than their differentiated Caco-2cl1 counterparts (223); a
process that could account for this has been proposed. The con-
version of M cell-like cells may be due to the disruption of the
brush border resulting from a mouse PP lymphocyte-triggered
dedifferentiation process (226). Consistently with this, there was
an �2-fold downregulation of the SI promoter in the M cell-like
cells compared to Caco-2 cl1 cells, indicating that the lymphoepi-
thelium-induced downregulation of the differentiation- and
brush border-associated SI in converted M cell-like cells is the
result of a lymphoepithelium-triggered dedifferentiation process
of fully differentiated Caco-2 cl1 cells (226). The dedifferentiation
of Caco-2 cl1 cells, converting them into M cell-like cells, probably
results from a contact-dependent mechanism that occurs when

FIG 7 The parental nondifferentiated ileocecal adenocarcinoma HCT-8 cell
line and fully differentiated HCT8-MTX cells. (A to C) Transmission electron
microscopy examination of parental HCT-8 cells shows the cells expressing
unorganized cell extensions at the periphery of isolated cells (A and B) and the
presence of no well-ordered microvillus-like structures in cells localized at the
periphery of cell clusters (C). (D and E) Transmission electron microscopy
examination of fully differentiated HCT8-MTX cells expressing a short and
well-ordered brush border. Cells were observed after 15 days in culture. (Re-
printed from reference 201 with permission of the publisher.)
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mouse PP lymphocytes come into contact with fully differentiated
Caco-2 cl1 cells, rather than as a result of the action of molecules
secreted by mouse PP lymphocytes. Indeed, after coculture with
mouse PP lymphocytes, all the fully differentiated Caco-2 cl1 cells
were not converted into M cell-like cells, and only randomly dis-
tributed M cell-like cells were observed within the Caco-2 cl1 cell
monolayer after coculture (223). These M cell-like models have
been used to investigate the transport of M cell particles (225,
228–232) and the interaction with and entry into M cells of en-
teroinvasive pathogens such as Listeria monocytogenes, Yersinia
enterocolitica, Salmonella spp., and enterovirulent Escherichia coli
(221). It is noteworthy that a mouse model of M-like cells has been
established by El Bahi et al. (226) from cultured mouse intestinal
mICCl2 cells (233) cocultured with lymphocytes freshly isolated
from BALB/c mouse PP. When grown on permeable filters, the
m-ICcl2 cells form sealed, confluent monolayers of cuboid, polar-
ized cells with TJs, develop dense, short apical microvilli, form
fluid-transporting domes, conserve the main features of small in-
testine crypt cells (including the expression of cytokeratins, villin,
APN, DPP IV, and glucoamylase), and retain crypt cell features
(including intracellular sucrase isomaltase, the accumulation of
alpha-L-fucose glycoconjugates, and expression of the polymeric
immunoglobulin receptor and the CFTR) (233). m-ICcl2 cells
have been used to identify the intracellular Toll-like receptor 4
(TLR4) (which recognizes lipopolysaccharide [LPS]) (234, 235),
the migration of CD8� intraepithelial lymphocytes isolated from
CCR5-deficient mice infected with Toxoplasma gondii (236), and
the receptor-mediated intestinal transcytosis of botulinum neu-
rotoxin A (237, 238).

The enteric nervous system, i.e., enteric neurons and enteric
glial cells, is a potent modulator of intestinal epithelial barrier
function, which has given rise to the novel concept of a digestive
“neuronal-glial-epithelial unit” (30). Two coculture models con-
sisting of human submucosa have been described, which contain
the submucosal neuronal network cocultured with human fully
differentiated mucus-secreting HT29-Cl.16E or enterocyte-like
Caco-2 monolayers. These models have been used to investigate
the effects of submucosal neuron activation by electrical field
stimulation on cell proliferation (239), on the VIPergic neuronal
pathway controlling the paracellular permeability and structural
organization of TJs (70), and on the protein kinase A (PKA)-
independent and mitogen-activated protein kinase (MAPK)-de-
pendent production of IL-8 (240).

Choice of Cells and Technical Considerations

Some considerations must be taken into account when choosing
between human colon cancer fully differentiated Caco-2 cells,
HT-29 subpopulations, or HT-29 or Caco-2 clone cells as intesti-
nal models for the study of the mechanisms of pathogenesis of
enterovirulent bacteria. It is clear that the different human colon
cancer cell lines, subpopulations, or clones are not equivalent. For
example, the growth rate (94), TER values (93), glucose consump-
tion (94), expression of SI (94) and hexose transporters (123) at
the brush border, expression of NHE antiporters at the brush bor-
der or basal domain (129, 241, 242), and sucrose activity values
(94) all differ considerably in fully differentiated Caco-2 clone
cells (243). Analysis of the literature shows that the enterocyte-like
models most often used to investigate the molecular and cellular
mechanisms of microbial pathogenesis are parental Caco-2 cells
(82), Caco-2BBe 1 (86), cl1 (88), and Caco-/TC7 (94) clones, and

the HT-29 Rev Glc�/� subpopulation (38). The most frequently
used mucus-secreting cell models are the HT29-MTX subpopula-
tion (38) and the HT-29.cl16E clone (42).

Some important technical considerations also have to be taken
into account for the appropriate culture of human colon cancer
cell lines, subpopulations, or clone cells. Some of the cells that
have been transferred between laboratories have been contami-
nated with mycoplasmas, which affects their functional differen-
tiation. They may, unfortunately, even have been contaminated
with human cervical carcinoma epithelial HeLa cells, which makes
them unsuitable for use in any studies at all. It is therefore impor-
tant to obtain cell lines, subpopulations, or clone cells from cul-
ture collections or from expert laboratories that can validate that
the transmitted cells comply with specifications. The most com-
plete cell polarization and fully functional differentiation have
been obtained by culturing the cells on polycarbonate filters.
However, the high cost of this culture system has restricted its use
to experiments involving TER and transcellular or paracellular
passage measurements. In general, cells are cultured in polysty-
rene tissue culture plates. The cell density during growth can in-
fluence the morphological and physiological properties of the
fully differentiated cells (243–245). Indeed, some reports describe
using protocols in which the culture plates are inoculated with
cells at high density after trypsinization. This shortens the culture
time as the cells reach confluence quickly, but this is achieved at
the cost of good functional differentiation. It is therefore impor-
tant to carry out regular checks of the polarized organization of
the cells by indirect immunofluorescence labeling of SI coupled
with a confocal laser scanning microscopy examination and de-
termination of the activity of brush border-associated hydrolases
(243, 246). The passage number also influences the morphological
and functional differentiation of the cells (243, 247–249). The
culture medium used also influences the growth and the func-
tional differentiation of the cells. Indeed, some human colon can-
cer cells lines, subpopulation, and clones can form multilayers in
culture in which only the top layer of cells are fully differentiated
(243, 247, 248). This phenomenon has been observed particularly
for parental Caco-2 cells when the fetal bovine serum used con-
tains high levels of cyclic AMP (cAMP), and the result is that cell
proliferation seems to be preponderant relative to cell differenti-
ation (A. L. Servin, unpublished data). A similar effect has been
observed with Caco-2BBe 1 clone cells cultured in culture me-
dium supplemented with glutamine (250, 251). It is therefore nec-
essary to select an appropriate fetal bovine serum that will result in
the culture of a cell monolayer composed entirely of structurally
and functionally fully differentiated cells (243, 252). These con-
siderations highlight the need to be attentive to the details of the
culture conditions described in primary reports.

MECHANISMS OF PATHOGENESIS OF HUMAN
ENTEROVIRULENT BACTERIA

Enterovirulent bacteria colonize various sites in the human intes-
tine. Vibrio cholerae, Salmonella enterica serovar Typhi, entero-
pathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and
diffusely adherent E. coli (DAEC) preferentially affect the small
intestine, whereas Shigella spp., Campylobacter spp., enterohem-
orrhagic E. coli (EHEC), and enteroinvasive E. coli (EIEC) infect
the colon and Yersinia spp., enteroaggregative E. coli (EAEC), and
Salmonella spp. affect both the small and large bowels. By use of
adhesive factors and virulence factors, including bacterial effector
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proteins, expressed specifically by each pathogen and acting indi-
vidually or in synergy, enterovirulent bacteria use sophisticated
strategies to manipulate the host cell differently (Fig. 2).

A critical step in intestinal bacterial pathogenesis is the ability
of enterovirulent bacterial pathogens to interact efficiently with
the different cell phenotypes lining the host intestinal barrier. In
order to interact with the polarized host epithelial cells that line
the intestinal barrier, many bacterial species move within the lu-
minal intestinal compartment by rotating their flagella (253, 254).
The molecular mechanism by which the flagellum is assembled
involves the regulation of flagellar gene transcription, as well as
translational and posttranslational regulation events. For exam-
ple, the biogenesis of the flagellum in S. enterica serovar Typhimu-
rium develops by the coordinated structural assembly of the fla-
gellar proteins that form the flagellar propeller (255–257), and
MotA and MotB are cytoplasmic membrane proteins that form
the force-generating unit of the flagellar motor (256, 258). The
flagella of enterovirulent bacteria have been shown to be necessary
for colonizing the intestine, crossing the intestinal mucus layer
and then attaching to epithelial cells, and promoting early innate
host responses. Human enterovirulent bacteria display huge ge-
netic diversity, and have evolved a wide repertoire of virulence and
colonization factors that facilitate host-pathogen interactions
with the apical domain of the fully differentiated polarized epithe-
lial cells and M cells that line the intestinal epithelial barrier (259–
265). Moreover, human intestinal bacterial pathogens are
equipped with a variety of weapons that provide them with a va-
riety of mechanisms for subverting the cellular machinery and
circumventing host defenses.

Gram-negative bacteria have developed a variety of solutions
for secreting proteins from the cytoplasmic compartment outside
the bacterial cell (265–267). Six major protein secretion pathways,
numbered I to VI, have been characterized for Gram-negative
bacteria (268). The type I secretion system consists of an ATP-
binding cassette transporter or a proton antiporter, an adaptor
protein that bridges the inner membrane and outer membrane,
and an outer membrane pore facilitating the passage of proteins,
including cytotoxins belonging to the RTX (repeats-in-toxin)
protein family, proteases, lipases, microcins, and colicins, across
the cell envelope of Gram-negative bacteria (269, 270). The type II
secretion system is a macromolecular, multicomponent structure
that translocates a precursor effector protein through the inner
membrane by the Sec translocon or the Tat pathway within the
periplasm, after which the effector protein is translocated through
the outer membrane (271, 272). The type III secretion system
(T3SS), composed of more than 20 different proteins which form
a large supramolecular structure crossing the bacterial cell enve-
lope, includes the bacterial flagellum and the virulence-associated
injectisome, which are two complex, structurally related nanoma-
chines that enterovirulent bacteria use for locomotion and for the
translocation of virulence factors into eukaryotic host cells, re-
spectively (273–276). The type IV secretion system is a transloca-
tion pore involving the coordinate assembly of core complex pro-
teins, including VirB3 to VirB10, which assembles with VirD4 for
substrate recruitment and which, after activation, secretes the
substrate (277–279). In addition, by association of the core com-
plex proteins with the VirB11 protein, a pilus formed of VirB2 and
VirB5 proteins assembles. The type V secretion system forms a
pore in the outer membrane through which the passenger domain
passes to the cell surface (280, 281). The newly identified type VI

secretion system is a complex bacterial export pathway composed
of at least two complexes, a dynamic bacteriophage-like structure
and a cell envelope-spanning membrane-associated assembly
(282, 283). Like the type III and IV secretion systems, the type VI
secretion system translocates substrates directly into recipient
cells in a contact-dependent manner.

Enterovirulent noninvasive EPEC and EHEC and enteroinva-
sive Yersinia, Shigella, and Salmonella use T3SS injectisomes for
the infection of host intestinal epithelial cells (Fig. 2). Injectisomes
are macromolecular infection machineries consisting of structural
and nonstructural proteins which form a basal body anchored in
bacterial membranes, an external needle that protrudes from the
bacterial surface, and a tip complex that caps the needle, function-
ing as a bacterial syringe through which bacterial effector proteins
are delivered into the cytoplasm of target host cells (284–287). It
has recently been revealed that Shigella and Salmonella injecti-
some subunit proteins adopt a conserved structure and orienta-
tion in their assembled state (288). The analysis of the molecular
and cellular mechanisms of virulence of enterovirulent bacteria
has shown the great sophistication of the T3SS-associated bacte-
rial effectors. As the result of the piracy of host cell machinery,
some enterovirulent bacteria increase the targeting and biochem-
ical activities of their bacterial effectors (289). For example, some
bacterial effectors are modified by the attachment of a variety of
lipid groups by S-palmitoylation or N-myristoylation and preny-
lation, thus facilitating their interaction with the host cell mem-
brane or with membrane lipid raft microdomains. Others modi-
fications allow the optimal targeting of bacterial effectors within
the host cell mitochondria or nucleus (289). Following delivery
into the host cytoplasm, the bacterial effectors of Shigella (290–
293), Salmonella (291, 293–298), and Listeria (293, 299–301) ini-
tiate and maintain infection by manipulating host cell biology,
such as cytoskeletal dynamics, cell signaling, membrane traffick-
ing, protein ubiquitylation, transcription, and cell cycle progres-
sion, and by reprogramming of host cells and circumvention of
host defense mechanisms. For EPEC and EHEC pathogenesis, the
T3SS injectisome produces an attaching and effacing (A/E) lesion
at the microvilli of the brush border. These bacteria bind inti-
mately at the brush border membrane of fully differentiated intes-
tinal epithelial cells, which leads to a localized effacement of ab-
sorptive microvilli and the accumulation of host cytoskeletal
proteins just beneath the attached bacteria, thus forming the
“pedestal” structure of the cell membrane. The capacity for A/E
lesion formation is encoded mainly on the locus of enterocyte
effacement (LEE) pathogenicity island, the core of which harbors
the genes for the T3SS regulators, chaperones, and effector pro-
teins that subvert the host cell cytoskeletal and signaling machin-
ery (302–305). On the other hand, some enterovirulent bacteria
produce toxins that, after endocytosis, target the host epithelial
cell actin cytoskeleton or microtubule network, impairing the po-
larized cell sorting of functional proteins, affecting the polarized
cell organization, or altering the junctional domain organization
(287, 304, 306). Other toxins produce their cytotoxic activity by
inducing generally apoptotic death (307). Moreover, enterotoxi-
genic bacteria deliver cytotonic toxins that after receptor-binding-
and endocytosis-activated cell signaling pathways regulating the
functionality of membrane-associated proteins supporting spe-
cific intestinal functions of absorption/secretion (308, 309)
(Fig. 2). Investigation of the pathogenic molecular and cellular
mechanisms of enterovirulent bacteria using cultured, fully differ-
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entiated human colon cancer cell lines, subpopulations, and clone
cells has provided detailed models of their molecular manipula-
tion of host cell biology.

Cell Interaction, Cell Entry, and Intracellular Lifestyle

Enterovirulent bacteria interact with intestinal epithelial cells that
form the intestinal barrier via adhesive molecules expressed on
their surfaces (Table 2). The biogenesis and regulation of bacterial
adhesins in both intestinal and extraintestinal bacterial pathogens
have been studied in detail (259–265). Attachment to host intes-
tinal cells is a way of avoiding being dislodged by mucosal secre-
tions and peristalsis, and enterovirulent bacteria produce a wide
variety of adhesive structures or factors, including, for example,
nonfimbrial and fimbrial polymeric structures that extend out
from the bacterial surface and allow them to interact at a distance
from the cells. These adhesive factors allow a close association to
develop between enterovirulent bacteria and host cell membrane-
bound molecules expressing an extracellular domain. The bacte-
rial adhesion to the brush border of enterocytes is much more
than just simple attachment. In the case of ETEC, it allows the
optimal delivery of cytotonic toxins in the vicinity of their mem-
brane-associated receptors, which is followed by signaling events
that affect electrolytes and fluid secretion. Close adhesion allows
both EPEC and EHEC to insert the translocated intimin receptor
into the host cell membrane, triggering the recruitment of actin
immediately underneath the attached bacterium to form the ped-
estal structures that create and maintain the intimate attachment
of the bacterium, resulting in characteristic A/E lesions on the
brush border and in dramatically impaired absorption/secretion
functions. For Shigella and Salmonella, adhesion initiates an or-
derly series of bacterial effector-controlled molecular events
within a defined area on the host cell membrane, which facilitate
the formation of the dramatic actin-rich cell surface ruffles that
are pivotal to the successful completion of bacterial invasion fol-
lowed by the adoption of an intracellular lifestyle by the internal-
ized bacteria.

Yersinia. The three Yersinia species that are human pathogens
are Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. Y. entero-
colitica and Y. pseudotuberculosis are Gram-negative, food- or wa-
terborne enteropathogenic bacteria that share the same modes of
transmission and typically cause self-limiting infections restricted
to the intestinal tract and intestinal lymphoid system (310, 311).
The core of the Yersinia pathogenicity arsenal is the Yop virulon,
also known as the “Yop secretion system,” expressed by Y. pestis, Y.
pseudotuberculosis, and Y. enterocolitica, which allows Yersinia to
inject specialized proteins, known as Yop effectors, through the
plasma membrane into the cell cytoplasm (285, 312).

The cell association and cell entry of Yersinia pseudotuberculosis
expressing inv and/or ail loci as a function of intestinal cell differ-
entiation has been investigated by Coconnier et al. (313) using
parental undifferentiated and fully differentiated Caco-2 cells
(Table 2). This phenomenon parallels the change in the cell dis-
tribution of �5�1 integrin, since integrin expression is high at the
cell surface of proliferative undifferentiated cells, and the integrin
is redistributed so as to localize at the cell-to-cell contacts when
the cell reach confluence. Cell invasion occurs when the Caco-2
cells are undifferentiated and is arrested when differentiation
commences. Similar differentiation-dependent internalization
has been observed for Y. enterocolitica in T84 cells (314). In con-
trast, it has been reported that Y. enterocolitica O:8 WA interacts

with and is internalized into fully differentiated Caco-2 cells (315,
316). Moreover, the entry of Y. pseudotuberculosis and Y. entero-
colitica into nonphagocytic cells is mediated by the bacterial outer
membrane protein (OMP) invasin, and the invasin-mediated up-
take requires high-affinity binding of invasin to host cell mem-
brane-associated multiple �1 chain integrin receptors (317, 318).

Shigella. Shigella spp. are Gram-negative, enteroinvasive bacte-
ria belonging to the Enterobacteriaceae family (290, 292, 319). The
genus Shigella is divided into four species, S. boydii, S. dysenteriae,
S. flexneri, and S. sonnei. The World Health Organization (WHO)
considers that shigellosis is a significant public health burden in
developing countries, with about 160 million cases occurring an-
nually, predominantly in children under 5 years of age, possibly
leading to one million deaths per year worldwide. Members of the
genus Shigella cause bacillary dysentery in humans by invading the
colonic epithelial mucosa, inducing a strong inflammatory re-
sponse, and causing devastating diarrhea. After crossing the epi-
thelium barrier and entering the M cells, Shigella bacteria are de-
livered to resident macrophages, within which they induce
apoptosis, and thus reach the basal membrane of fully differenti-
ated intestinal epithelial cells, through which they enter the cells
(291). To enter a cell, Shigella bacteria use their T3SS needle,
which is inserted into the cell membrane to allow the translocation
of bacterial effector proteins into the host cell cytoplasm. Once
inside the cell, the bacteria escape from the Shigella-containing
vacuole into the cell cytoplasm, in which the bacteria move
through an actin-based motility and spread to the neighboring
cells via cellular membrane invaginations known as transpodia
(293).

Mounier et al. (320), using fully differentiated Caco-2 cells,
were the first to demonstrate that the invasion of human intestinal
cells by S. flexneri occurs via the basolateral pole of these cells,
whereas other bacteria interact with the apical surface without
causing any detectable change in the microvilli (Table 2). After
bile salt exposure, S. flexneri increases the expression of OMP-
associated OspE1/OspE2 proteins and displays an increased ca-
pacity to adhere to the brush border of fully differentiated T84
cells (321). In fully differentiated Caco-2 cells, Ipa proteins are
released from bacteria interacting with the basolateral surface
rather than with the apical surface (322). Mutation of the genes
encoding the T3SS effectors IpgB1, acting as a functional Rac
mimic, and IpgB2, acting as a molecular mimic of Rho for the
Shigella-induced formation of cell surface lamelliopodia, shows
that the cell entry of S. flexneri mutants into fully differentiated
Caco-2 cells is 70% lower than that of the wild-type strain (323).
The S. flexneri O antigen, regulated by the WzzB protein, and a
very long O antigen have been found to be involved in basolateral
cell entry into fully differentiated Caco-2 cells (324). A role of
cellular gap junctions in S. flexneri pathogenesis has been recently
demonstrated. Gap junctions consist of arrays of intercellular
channels composed of integral membrane proteins called con-
nexin (Cx) (325). The type of Cx expressed in intestinal cells is
still a matter of debate, and little is known about the role of hemi-
channels in intestinal epithelial cells. Cx26, Cx32, and Cx43 were
present in fully differentiated T84 and Caco-2 cells (326–329).
Functional data suggest that Cx26-mediated gap junctional inter-
cellular communication plays a crucial role in enhancing the bar-
rier function of TJs in fully differentiated Caco-2 cell monolayers
(326). In fully differentiated Caco-2/TC7 cells, Ca2� movements
through opening of Cx hemichannels were detected upon S. flex-
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TABLE 2 Overview of cell interaction, cell entry, and intracellular fate within fully differentiated human colon cancer cell lines

Pathogen Cell line
Pathogenicity island, virulence
factor, or cellular protein Effect Reference(s)

Yersinia Caco-2, T84 Inv Cell entry blocked by polarization during cell
differentiation

313, 314

M-like Caco-2 Undetermined Entry within M-like cells 227, 824

Shigella Caco-2 Undetermined Specific basolateral cell entry 320
Caco-2 Ipa Release of Ipa proteins by bacteria interacting with the

basolateral surface
322

Caco-2 IpgB1, IpgB2 Role in basolateral cell entry 323
Caco-2/TC7 Connexins Role of Cx26, Cx32, and Cx43 in basolateral cell entry 328

Listeria Caco-2 Undetermined Decrease of cell entry as a function of the polarization
during cell differentiation

337, 338,
339

Caco-2 ActA Role in cell entry within epithelial cells 340
C2BBe 1 InlC, Tuba Role in bacterial spreading 341

Campylobacter Caco-2 Undetermined Cell entry 346
Caco-2 Undetermined Paracellular translocation 347
Caco-2 FlaA, FlaB, Mot Role of flagella and swimming motility for cell entry 350, 351
T84 Undetermined PI3K-dependent cell entry 658
Caco-2 Undetermined Residing within CD63-positive vacuoles 356
Caco-2 LuxS Role in cell entry 364
T84 FlaA, CadF, PldA, CiaB, CdtA,

CdtB, CdtC
Roles in cell entry 352

T84 CapA Role in adhesion and cell entry 354
Caco-2 LOS Role in cell entry 348

HtrA, E-cadherin Role in cell entry 357

Salmonella Caco-2, T84 Undetermined Interaction with apical microvilli and cell entry 374–377,
389

Caco-2 Flagella Role in association with brush border and cell entry 382–384
Caco-2 SopA, SopB, SopD, SopE2 Role in cell entry 391
Caco-2 Undetermined Internalized bacteria residing within membrane-bound

vacuoles
374, 377,

393
T84 SodC1, SodC2 Role in intracellular survival 394
Caco-2 MgtBC, PstACS, Iro, SPI-2 Upregulation of genes for magnesium, phosphate, and

iron uptake and SPI-2
396

Vibrio cholerae Caco-2 Undetermined Adhesion to microvilli 408
Caco-2 OmpU Role in cell association 410
Caco-2 Type IV toxin-coregulated

pilus
Role in cell association 411

ETEC Caco-2 CFAs Adhesion to microvilli 423
Caco-2 CSs Adhesion to microvilli 422, 426–

429, 431,
432

Caco-2 PCFs Adhesion to microvilli 422, 424
Caco-2 Antigens Adhesion to microvilli 423, 425
Caco-2 Type IV long pilus Adhesion to microvilli 433
Caco-2 EtpA and EtpB Adhesion to microvilli 434
Caco-2, HT-29 Glc� CFAs Cell differentiation-dependent adhesion of ETEC to

microvilli
435, 436

AIEC Caco-2 Undetermined Adhesion to microvilli and role of CEACAM6 as cell
membrane receptor

415, 456

Caco-2, T84 FimH Identification of FimH mutations affecting adhesion 457, 458
Caco-2BB2, T84 Flagella Role in cell association and cell entry 449
T84 OmpC Role in cell association and cell entry 459
Caco-2 OMVs Role of chaperone Gp96 in cell recognition of OMVs 460

(Continued on following page)
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neri invasion (328). Moreover, in partially differentiated Caco-2/
TC7 cells, S. flexneri is captured at a distance from the cell surface
on the apical side of the cell-to-cell domain by nanometer-thin
micropodial extensions (330). This phenomenon is accompanied
by F-actin condensation and cell entry via an extracellular signal-
regulated kinase 1/2 (Erk1/2) MAPK-dependent process involv-
ing the T3SS tip complex proteins and stimulated by ATP- and
Cx-mediated signaling.

Movement of Shigella within the host cell cytoplasm requires
F-actin polymerization, which allows Shigella to induce F-actin
nucleation and elongation, thus gaining propulsive force. This
bacterial movement causes the cell membranes of primarily in-
fected polarized cells to protrude, forming transpodia allowing the
penetration of the intracellular bacteria into neighboring cells and
thereby allowing the bacteria to disseminate into adjacent cells. It
is noteworthy that the roles of the S. flexneri virulence factors
involved in intercellular spread of S. flexneri or cell-to-cell passage
via transpodia have been investigated using plaque assay consist-
ing of nonintestinal undifferentiated epithelial cells such as HeLa
cells (331) or isolated Caco-2 cells or islets of undifferentiated
Caco-2 cells (332, 333).

Listeria. Listeria monocytogenes is a ubiquitous, Gram-positive
bacterium that thrives in diverse environments such as soil, water,
various food products, human beings, and animals (300, 301,
334). The disease caused by this bacterium, listeriosis, is acquired

by ingesting contaminated food products and mainly affects im-
munocompromised individuals, pregnant women, and newborn
infants. It is responsible for severe systemic infections with high
mortality rates, including meningitis or meningoencephalitis,
septicemia, diarrhea, miscarriages, and perinatal infections. After
being ingested, this intracellular pathogen breaches the intestinal
barrier. During severe infections it crosses the blood-brain barrier,
resulting in infection of the meninges and the brain, and in preg-
nant women it crosses the fetoplacental barrier, leading to infec-
tion of the fetus. L. monocytogenes displays a battery of virulence
factors, some of which functionally or structurally mimic host
proteins to hijack host cellular processes (299, 301, 335, 336), and
several different host cell signaling cascades during its intracellular
life cycle (293).

The first report describing the interaction and cell entry of an
enterovirulent bacterium with the cultured Caco-2 cells was made
by Gaillard et al. (337) (Table 2). These authors used semiconflu-
ent, mainly undifferentiated cell monolayers and reported that L.
monocytogenes entered the cells and that the internalized bacteria
resided inside vacuoles. These authors also observed that listerio-
lysin O (LLO) functions as a major factor allowing bacteria to
escape from phagosomes and to multiply within the cell cyto-
plasm. Karunasagar et al. (338), using fully differentiated Caco-2
cells, reported that L. monocytogenes entered the cells through the
apical surface without modifying the microvilli but as the result of

TABLE 2 (Continued)

Pathogen Cell line
Pathogenicity island, virulence
factor, or cellular protein Effect Reference(s)

tEPEC Caco-2 Undetermined Formation of typical tEPEC microcolonies 464
HT-29 Glc�/�,

Caco-2, T84
Undetermined Cell differentiation-dependent formation of typical tEPEC

microcolonies
467

Caco-2 Bundle-forming pili Role in formation of typical tEPEC microcolonies 465, 466
Caco-2 Undetermined Recruitment of cell surface nucleolin around the bacteria

present in microcolonies
609

aEPEC Caco-2 Undetermined Localized adherence-like, DA and AA patterns of adhesion 487, 488

EHEC Caco-2, T84 Undetermined Dense and localized microcolonies at the brush border 464, 492
Caco-2 LEE Role in adhesion 493–496
Caco-2 OmpA, long polar fimbriae Role in adhesion 497, 498
Caco-2 Tir Role in adhesion 496
Caco-2 YhiE, YhiF, ToxB Regulators for T3SS-dependent adhesion 499, 500
Caco-2 Type 4 pili Role in adhesion 501
T84 Hemorrhagic E. coli pili Role in adhesion and biofilm formation 502, 503

EAEC Caco-2, T84 EspP, EhxD Role in adhesion to brush border 507, 644,
645

T84 AAF/I and AggR Role in adhesion to brush border 508
Caco-2, T84 Undetermined Cell invasion 509

Afa/DrDAF/CEACAMs DAEC Caco-2 Afa-I, Dr, F1845 Role in cell differentiation-dependent diffuse adhesion at
the brush border

533–535

Caco-2/TC7 Dr, F1845 Role in hDAF and hCEA receptor clustering around
bacteria adhering onto the brush border

526

Caco-2/TC7 Dr, F1845, Afa-III Increased lipid raft-dependent internalization after
basolateral infection compared to apical infection

536, 537

Role in recruitment of �1-integrin around adhering
bacteria and preceding cell entry

538, 539

aDAEC Caco-2 CF16K, CS31A Role in adhesion at the brush border 432, 517
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forming lamellipodia that are involved in the cellular uptake of the
bacteria. Gaillard and Finlay (339) have investigated the entry of L.
monocytogenes into Caco-2 cells as a function of cell polarization
and differentiation. L. monocytogenes entered through the entire
surface of undifferentiated cells but predominantly through the
basolateral surface of polarized cells, since the numbers of inter-
nalized bacteria decreased dramatically when the Caco-2 mono-
layers were cultured beyond confluence. Interestingly, by creating
a disruption of intercellular junctions in Caco-2 monolayers that
expose the lateral domain of the fully differentiated cells, an en-
hanced number of bacteria were internalized after apical infec-
tion. Loss of the actin-polymerizing protein ActA reduces the api-
cal entry of L. monocytogenes into fully differentiated Caco-2 and
MDCK epithelial cells (340). Scanning electron microscopy ex-
amination of infected, fully differentiated Caco-2 cells suggests
that internalization involves microvilli that mediate bacterial up-
take after being remodeled to form pseudopods. In contrast, ActA
does not contribute to L. monocytogenes internalization by COS-1
fibroblasts or Hepa 1-6 hepatocytes, indicating that ActA can di-
rect an internalization pathway specific to epithelial cells. It has
been established in undifferentiated Caco-2 cells that InlA inter-
acts with human E-cadherin to promote L. monocytogenes cell
entry through a dynamic process involving coordinated actin cy-
toskeleton rearrangements and host cell membrane remodeling at
the site of bacterial attachment. Bacterial and host proteins that
directly regulate L. monocytogenes-induced protrusions have been
identified using fully differentiated Caco-2BBe 1 clone cells, and
this showed that the spread of the bacterium between polarized
cells requires secreted protein InlC and cell adaptor protein Tuba
(341). Indeed, Tuba functions as a ligand of InlC. InlC binds to a
carboxy-terminal SH3 domain in Tuba that normally engages the
human actin regulatory neural Wiskott-Aldrich syndrome pro-
tein (N-WASP). Since Tuba and N-WASP are known to control
the structure of apical junctions in epithelial cells, it has been
proposed that InlC may promote protrusion formation by inhib-
iting Tuba and N-WASP activity, probably by impairing the bind-
ing of N-WASP to the Tuba SH3 domain. Experiments with
myosin II inhibitors indicate that InlC-mediated disruption of
apical junctions accounts for the role of this bacterial protein in
protrusion formation.

It is noteworthy that as for Shigella, isolated undifferentiated
Caco-2 cells, islets of undifferentiated Caco-2 cells, or undifferen-
tiated Caco-2 cells at the early stage of confluence have been used
to identify Listeria virulence factors involved in the intracellular
lifestyle, including intracellular movements (342, 343).

Campylobacter jejuni. Campylobacter spp. are microaero-
philic, curved, Gram-negative rods exhibiting motility and are
carried in the intestines of many wild and domestic animals, par-
ticularly avian species, including poultry (344). Campylobacter is
recognized as the leading cause of bacterial food-borne diarrheal
disease worldwide. Symptoms can range from mild to serious in-
fections in children and the elderly to permanent neurological
symptoms. Campylobacter spp. express a set of virulence factors,
including flagella for swimming within the mucus and host-bac-
terium interactions, chemotaxis proteins, adhesive factors (in-
cluding CadF, which recognizes fibronectin), Peb1, Cj1496c, JlpA
(which activates NF-�B and p38), mitogen-activated protein ki-
nase (MAPK), lipoprotein CapA (implicated as a possible adhe-
sin), the secreted protein CiaB (which is required for the invasion
of epithelial cells), and cytolethal distending toxin (CDT), (345).

Campylobacter spp. lack T3SS and invade intestinal epithelial cells,
but the mechanisms that control cell entry are not fully under-
stood. It is clear that cell entry involves a microtubule-dependent
mechanism, since the pseudopods entrapping cell-associated bac-
teria contain microtubules. In addition, several Campylobacter
strains also require microfilament polymerization for cell entry.
Once internalized, C. jejuni localizes within vacuoles and moves
along the microtubules to the perinuclear region of the cell. The
role of these internalized bacteria in pathogenesis, possibly by
evading the immune system and establishing a protected reser-
voir, remains to be determined.

Using fully differentiated Caco-2 cell monolayers grown on
microporous membrane filters, Konkel et al. (346) were the first to
observe that C. jejuni translocates across the cell monolayers by
passing both through and between cells (Table 2). When infecting
a T84 cell monolayer via the basal domain, C. jejuni translocation
appears to occur via a paracellular route rather than a transcellular
route (347). C. jejuni isolates expressing ganglioside-like lipooli-
gosaccharide (LOS) are highly adhesive and penetrate into fully
differentiated Caco-2 and T84 cells, in contrast to C. jejuni isolates
that lack these structures (348). Cell association and invasion of
Caco-2 cells are inhibited by various sugars, including D-glucose,
D-mannose, D-fucose, and N-acetylneuraminic acid (349, 350),
and intracellular C. jejuni is localized within membrane-bound
vacuoles (350). Examination of the role of flagella and swimming
motility in the interactions of C. jejuni with fully differentiated
Caco-2 cells reveals that both the flagellated, nonmotile (flaA�

flaB� mot) and nonflagellated, nonmotile (flaA flaB mot) mu-
tants, unlike the wild-type strain, are unable to translocate across
cell monolayers (350–352). Moreover, in the presence of intestinal
mucus, C. jejuni displays straight swimming motility punctuated
by tumbling (353). An autotransporter protein capA insertion
mutant has a significantly lower capacity to associate with and
invade fully differentiated Caco-2 cells (354). During C. jejuni
translocation across fully differentiated Caco-2 cell monolayers,
the absence of any change in TER and inulin paracellular passage
indicates that the bacteria translocated through the cytoplasm of
the cells invade, rather than via intercellular spaces (355). C. jejuni
invading, via an actin- and microtubule-independent mechanism,
fully differentiated Caco-2 cells localized in at the periphery of
large islets of cells have been found residing within CD63-positive
vacuoles, in which they are metabolically active (356). The serine
protease HtrA of C. jejuni plays a role in promoting the basolateral
invasion of fully differentiated Caco-2 by cleaving E-cadherin
(357).

Quorum sensing (QS) is a “language” by which bacteria and
host cells communicate (358–360). Signaling factors produced by
enterovirulent bacteria have the function to communicate both
the cell density and the metabolic potential of the environment
and also to regulate the expression their virulence factors (361–
363). Consistent with the fact that the genome sequence of C.
jejuni NCTC 11168 contains a gene encoding an orthologue of
LuxS, which is required for QS autoinducer-2 (AI-2), a luxS mu-
tant displays the same ability to invade fully differentiated Caco-2
cell monolayers as the parental strain, even though it exhibits de-
creased motility in semisolid media, suggesting that quorum sens-
ing may play a role in the regulation of motility (364).

When C. jejuni is grown in iron-limited medium in the pres-
ence of norepinephrine (NE), the motility of bacteria and their
entry into fully differentiated Caco-2 cells are both increased
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(365). In addition, in the presence of NE, C. jejuni causes greater
disruption of cultured epithelial cell monolayers than in the ab-
sence of NE. The roles of environmental stress factors, including
temperature shift, nutrient starvation, and atmospheric oxygen
concentration, in C. jejuni pathogenicity have been evaluated in
fully differentiated Caco-2 cell monolayers (366–368). Nutrient
insufficiency and temperature elevation both transiently affect
bacterial growth and also affect the adhesion and invasive proper-
ties of C. jejuni. Oxidative stress does not affect either the binding
or invasion of cells, whereas oxygen exposure or microaerobic
conditions increase both the invasion capability and survival of
intracellular C. jejuni.

Salmonella spp. Salmonellae are Gram-negative bacteria that
cause gastroenteritis and enteric fever (295). Salmonella serovars
associated with gastroenteritis orchestrate a strong intestinal in-
flammatory response and cause deleterious structural and func-
tional cell injuries that result in severe secretory disease. Salmo-
nella bacteria share the ability to invade the host by inducing their
own uptake, and they survive and multiply within the epithelial
cells and M cells lining the intestinal epithelium (369). To do this,
Salmonella virulence requires the coordinated expression of com-
plex arrays of virulence factors (369, 370). The most important
Salmonella virulence genes are those located within the five so-
called Salmonella pathogenicity islands (SPIs) (369, 370). Salmo-
nella cells attach to the enterocytes and M cells by means of adhe-
sions, including those encoded within SPI-3 and SPI-4. Invasion
of adhering Salmonella within the cells occurs by an F-actin-de-
pendent process triggering a cell membrane engulfment mediated
by virulence factors encoded within SPI-1 and SPI-5. Both T3SS-1
and T3SS-2 are composed of approximately 20 to 30 proteins,
with a major subset of these proteins having a structural role in
forming the supramolecular injection apparatus, known as the
needle complex, which is composed of three distinct substruc-
tures: a multiring base, an inner rod, and a needle (286, 371).
Another set of proteins forms the translocon, thus producing a
pore in the host cell membrane allowing the delivery of bacterial
effectors into the host cell cytoplasm (286, 294, 372). Moreover,
both T3SS-1 and T3SS-2 are responsible for delivering a series of
specific bacterial effectors into host cells, altering host cell organi-
zation, functions, and survival. When internalized, bacteria reside
within the cell cytoplasm within large vesicles named Salmonella-
containing vacuoles (SCVs), where they replicate. For the intra-
cellular lifestyle, virulence factors dependent on SPI-2 and the
plasmid pSLT (a cryptic plasmid present in S. Typhimurium
strain LT2) are essential for survival (298, 373). The SCVs tran-
scytose to the basolateral membrane and release the bacteria to the
submucosa, in which they are internalized within resident phago-
cytes again within SCVs, where SPI-3 in addition to SPI-2 and the
pSLT plasmid plays an important role. Lastly, the infected phago-
cytes can disseminate through the lymph and the bloodstream.
Alternatively, bacteria can also be directly taken up by dendritic
cells (DCs) from the submucosa (370). In addition, emerging ev-
idence indicates that these effectors are also modular proteins
consisting of distinct functional domains/motifs that are utilized
by the bacterium to activate intracellular signaling pathways that
modify host cell functions (370).

The first reports describing the interaction of S. Typhimurium
with fully differentiated Caco-2 cells and the cellular conse-
quences were from Finlay’s group (374–377) (Table 2). Adhesion
of Salmonella at the brush border of fully differentiated Caco-2

cells has been observed to involve the SPI4-dependent, very large
nonfimbrial adhesin SiiE (378) and Std fimbriae (379). It has been
suggested that a Gal�(1-3) GalNAc epitope located in the glyco-
calyx is involved in the early recognition events between S. Typhi-
murium and Caco-2 BBe clone cells (380). Moreover, SadA, a
purported trimeric autotransporter adhesin of S. Typhimurium,
appears to be involved in cell aggregation and biofilm formation,
and it increases adhesion to fully differentiated Caco-2 (381). In
addition, it has been observed that flagella of S. enterica serovar
Enteritidis are involved in the association with and invasion of
fully differentiated cells (382–384). Using three of the four classes
of mutants that remain virulent in mice, Betts and Finlay (375)
observed that S. Typhimurium invasiveness requires intact motil-
ity and at least six distinct genetic loci. CorA, the primary or
“housekeeping” Mg2� channel, appears to be involved in the ex-
pression of several S. Typhimurium virulence factors, since a corA
mutant strain loses swimming motility and expresses lower levels
of InvH and SipC, accompanied by a decreased ability to invade
fully differentiated Caco-2 cells (385). Overexpression of matrix
metalloproteinase 9, which regulates the production of MUC-2
mucin, increases S. Typhimurium adhesion to fully differentiated,
mucin-secreting HT-29 cl.16E cells (386). Adherence of Std-fim-
briated S. Typhimurium to fully differentiated Caco-2 cells is
blocked by H type 2 oligosaccharide (Fuc�1-2Gal�1-4GlcNAc)
(387). In addition, sialic acid plays a role in the adhesion of S.
enterica serovar Typhi to fully differentiated Caco-2 cells (388).

Finlay and Falkow (377) reported for the first time that S. Ty-
phimurium, after interacting with the well-organized apical mi-
crovilli of fully differentiated parental Caco-2 cells, induced a dra-
matic, localized reorganization of the F-actin cytoskeleton at the
site of bacterial attachment known as membrane ruffling (377,
389). Following the disruption of the cell membrane, S. Typhimu-
rium penetrated the cells and appeared in the basolateral medium
of the fully differentiated Caco-2 cell monolayer. F-actin filament
rearrangement and morphological changes at the apical domain
of Caco-2 cells are essential for the entry of S. Typhimurium (374–
377). The T3SS-1 effector SipA, which directly binds F actin, thus
modulating actin dynamics and facilitating bacterial entry, has
been found to be preferentially associated with peripheral cortical
F-actin filaments but not with stress fibers in infected fully differ-
entiated Caco-2 cells (390). The T3SS-1 effectors SopE2 and SopB
are required for invasion, whereas the SipA protein accelerates
entry into epithelial cells. A contribution of the T3SS-1 effectors
SopA and SopD to the invasion of nonpolarized T84 cells by S.
Typhimurium has been observed, whereas in contrast, SopA,
SopB, SopD, and SopE2 all increase the invasiveness of an SipA-
positive strain in polarized T84 cells (391). These observations in
fully differentiated Caco-2 and T84 cells have been validated in a
human intestinal in vitro organ culture system in which S. Typhi-
murium has been shown to interact with border-expressing cells
and induce membrane ruffles (392).

Internalized S. Typhimurium cells are enclosed in SCVs within
the cytoplasm (374, 377). It has been noted that S. Typhi and S.
Typhimurium use similar mechanisms to invade and carry out
intracellular trafficking in Caco-2 cells (374, 393). The biogenesis
of SCVs within mammalian cells has been intensively studied over
recent years using various different polarized epithelial cells. The
ability of S. enterica serovar Choleraesuis to survive within fully
differentiated Caco-2 cells has been found to depend on sodC
genes, with sodC2 being more important than sodC1 (394). Inves-
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tigation of the role of T3SS-2 in cell entry, survival, and prolifer-
ation within the cells has revealed more efficient entry into fully
differentiated Caco-2 and T84 cells than into HeLa cells (395).
Moreover, although T3SS-dependent intracellular proliferation
has been observed in HeLa cells, intracellular replication in fully
differentiated cells was severely restricted and was not affected by
SPI-2 deletion (395). Analysis of the transcriptome of S. Typhi-
murium in fully differentiated Caco-2 cells has been conducted
and compared to Salmonella gene expression inside macrophages
(396). Upregulation of the mgtBC, pstACS, and iro genes for mag-
nesium, phosphate, and iron uptake and of the SPI-2 pathogenic-
ity island has been observed. Moreover, the invasion-associated
SPI-1 pathogenicity island, and the genes involved in flagellar bio-
synthesis were expressed inside epithelial cells at later stages of the
infection, whereas they were constantly downregulated in macro-
phage-like cells. The ability of Salmonella to sense and adapt to the
intracellular environment of different types of host cells has also
received attention. S. Typhimurium replicating in the Salmonella-
containing vacuole in undifferentiated Caco-2 cells utilized glu-
cose but not glucose 6-phosphate or other phosphorylated carbo-
hydrates, gluconate, or fatty acids as their major carbon substrate
(397). Carbohydrate phosphotransferase systems were encoded
by the genes ptsG/crr, manXYZ, fruBA, malX/crr, scrA/crr, and
bglF, and glucose 6-phosphate was taken up by both pathogens via
the UhpT transporter, which is under the control of a complex
two-component system (uhpABC). S. Typhimurium mutants de-
fective for the uptake of glucose and mannose (�ptsG manXYZ)
and glucose 6-phosphate (�uhpT) have less capability for intra-
cellular replication in undifferentiated Caco-2 cells, and the �ptsG
manXYZ uhpT triple mutant is still able to replicate within the
vacuoles (398).

Vibrio cholerae. The facultative pathogen and Gram-negative
bacterium Vibrio cholerae is the causative agent of cholera, which
is responsible for significant mortality and economic damage
(399–401). During its life cycle, V. cholerae has both a human stage
and an environmental stage. V. cholerae is differentiated serolog-
ically on the basis of the O antigen of its lipopolysaccharide. The
O1 serogroup has been subdivided into two phenotypically dis-
tinct biotypes: El Tor and classical. Cholera toxin (CT)-producing
strains of the O1 and O139 serogroups cause the vast majority of
cases of the disease worldwide. The major virulence factors of
toxigenic V. cholerae are CT, which is encoded by a lysogenic fila-
mentous bacteriophage (CTXPhi), and toxin-coregulated pilus
(TCP), an essential colonization factor that is also the receptor for
CTXPhi (402, 403). The type IV TCP acts as a receptor for CTX-
Phi, contributes to the secretion of the colonization factor TcpF,
and contributes to microcolony formation by mediating bacteri-
um-bacterium interactions. In addition to CT, V. cholerae pro-
duces other putative toxins, such as the zonula occludens toxin
(Zot) (404) and accessory cholera enterotoxin (Ace) (405). The
role of Zot in V. cholerae pathogenesis is a subject of debate (403).
Rearrangements occurring in the water environment in virulent
V. cholerae strains have been proposed as one of the mechanisms
of formation of clones with an incomplete or no prophage. Inter-
estingly, it has been shown that variability of the CTXPhi pro-
phage genome is an important factor in the modification of V.
cholerae virulence potential, determining the severity of the infec-
tion (406, 407).

Panigrahi et al. (408) were the first to report the adhesion of
non-O1 V. cholerae strain NRT36S to the microvilli of fully differ-

entiated Caco-2 cells (Table 2). Adhesion of V. cholerae has also
been investigated using fully differentiated mucus-secreting HT-
29-18 N2 cells (409). V. cholerae uses its OmpU outer membrane
protein to adhere to the brush border of fully differentiated
Caco-2 cells (410). The type IV TCP of V. cholerae has three func-
tions: it acts as a receptor for CTXPhi, the lysogenic filamentous
bacteriophage that carries the CT genes in epidemic V. cholerae
strains; it secretes the colonization factor TcpF and contributes to
microcolony formation by mediating bacterium-bacterium inter-
actions; and it acts as an attachment factor for binding to fully
differentiated Caco-2 cells, since attachment was defective in mu-
tants lacking TCP compared to in the wild type (411).

Enterovirulent E. coli. Six classes of human enterovirulent E.
coli have been defined: ETEC, EPEC, EHEC, EAEC, EIEC, and
DAEC (304, 412–414). In addition, the existence of a particular
group of E. coli strains named adherent-invasive E. coli (AIEC) has
recently emerged from studies investigating mucosa-associated
bacteria in patients with inflammatory bowel disease (IBD), in-
cluding ulcerative colitis (UC) and Crohn’s disease (CD) (415–
418). ETEC, EPEC, EHEC, and EAEC interacted with the brush
border of mature enterocytes and remained extracellular. Nataro
et al. (419), examining adhesion of diarrheagenic E. coli to cul-
tured nonintestinal undifferentiated epithelial Hep-2 cells, first
observed three different patterns of adhesion: diffuse adherence
(DA), in which bacteria cover the whole surface of the cell, local-
ized adherence (LA), in which attachment is limited to one or a
few sites on the cell surface, and aggregative adherence (AA), in
which adhering bacteria aggregate in an unorganized fashion.
Only EIEC and AIEC are capable of entering and replicating
within enterocytes.

(i) ETEC. Enterotoxigenic E. coli strains are a main cause of
diarrhea in young children under 5 years of age in developing
countries and also in adult travelers visiting areas of endemicity
(420). ETEC produces a cholera-like, watery diarrheal disease by
adherence, involving adhesive factors, onto brush border-associ-
ated receptors in mature enterocytes and expression and delivery
of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin
(ST)-recognizing, brush border-associated receptors activating
cAMP or cGMP, respectively, and cell signaling controlling intes-
tinal transports (308, 412, 421). ETEC attaches to microvilli via
filamentous bacterial surface structures, known as colonization
factors (CFs), and more than 20 different CFs have been de-
scribed. A family of ETEC adhesive factors that includes coloniza-
tion factor antigens (CFAs), E. coli surface antigens (CSAs), and
PCFO71 has been classified with the class 5 fimbriae on the basis of
the complete DNA sequences of the gene clusters encoding CFA/I,
CS1, CS2, the major fimbrial subunit, and outer membrane pro-
tein (OMP) and of the primary sequence of the major fimbrial
subunit, CFA/I, and related fimbriae, (422).

Darfeuille-Michaud et al. (423) were the first to have reported
that ETEC strains expressing colonization factor antigen I (CFA/
I), CFA/II, CFA/III, and antigen 2230 adhere to isolated human
enterocytes (Fig. 8A and Table 2). Other ETEC adhesive factors
conferring adhesion to fully differentiated Caco-2 cells have been
identified, including adhesive factor PCFO20 (424), antigens 8786
(425), CS4 (422), CS6 (426), CS14 (422), CS17 (422), CS19 (427),
CS20 (428), CS22 (429, 430), CS23 (431), and CS31A (432),
PCF071 (422), type IV long pilus encoded by ingA (433), high-
molecular-weight glycosylated protein EtpA (434), and the puta-
tive EtpB transporter (434). Adhesion of ETEC strains develops at
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the brush border without modifying the structure of the microvil-
lus (423). The expression of ETEC CFA receptors at the brush
borders of fully differentiated, HT-29 Glc�/�, and Caco-2 cells
develops as a function of cell differentiation and appears to be
controlled by the presence of glucose during cell culture (435,
436). ETEC bearing the fimbrial colonization factor antigens
CFA/I, CFA/II, and CFA/III and the nonfimbrial antigen 2230
interacted with the mucus produced at the apical domain of fully
differentiated mucin-secreting HT29-MTX cells (437). It was
noted that ETEC strains have been found to be invasive in the
undifferentiated ileocecal adenocarcinoma HCT-8 cells (216).

(ii) EIEC. Enteroinvasive E. coli strains can cause diarrhea (304,
413, 414). EIEC strains are biochemically, genetically, and patho-
genically closely related to Shigella spp. Like Shigella, EIEC infects
the colonic mucosa. The pathogenesis of EIEC has not yet been
fully elucidated. EIEC can be distinguished from Shigella by a few
minor biochemical tests, but these pathotypes share several iden-
tical virulence factors (412–414, 438, 439). The genes necessary for
EIEC cell entry are carried on a 140-MDa plasmid designated
pInv. Prominent among these genes are the mxi and spa loci,
which encode a T3SS that allows the secretion of numerous pro-
teins, including the effectors of the invasion phenotype Ipa pro-
teins such as IpaA, IpaB, IpaC, and IpaD. The escape of internal-
ized EIEC from the endocytic vacuole into the cytoplasm is
followed by an actin-dependent motility movement, which leads
to the passage of the bacteria into neighboring cells.

EIEC strains growing in the cytosol of undifferentiated conflu-
ent Caco-2 cells utilize glucose, but not glucose 6-phosphate, or
other phosphorylated carbohydrates, gluconate, or fatty acids as
their main carbon substrates (397, 398) (Table 2). Moreno et al.
(440) have compared the intracellular lifestyle of EIEC within fully
differentiated Caco-2 cells at the cellular and molecular levels to
that of S. flexneri. In a plaque assay of confluent undifferentiated
Caco-2 cells, the levels found for EIEC and S. flexneri were similar
at 1, 2, and 3 h postinfection, but at 4 and 5 h postinfection, fewer
intracellular EIEC cells were found, suggesting lower intracellular
proliferation than for S. flexneri. EIEC displays significantly less-
efficient cell-to-cell passage in the plaque assay than S. flexneri,
because the plaques formed by EIEC are four times smaller than
those formed by S. flexneri. Examined at the molecular level, ex-
pression of the regulatory gene virB and the invasion virulence
genes ipaA, ipaB, ipaC, and ipaD by EIEC during invasion within
Caco-2 cells is lower than that during S. flexneri infection. Expres-
sion of the regulatory genes virB and virF, the invasion virulence
genes ipaA, ipaB, ipaC, and ipaD, and iscA, which is necessary for
actin tail assembly by EIEC during cell-to-cell spreading, is lower
than that observed during S. flexneri infection. In contrast, the
regulatory gene virF is the only gene to be expressed to a greater
extent by EIEC than by S. flexneri (440).

(iii) AIEC. A heterogeneous group of E. coli strains have been
recently isolated from mucosa-associated bacteria in patients with
IBD, including UC and CD (415–418). It has been proposed that

FIG 8 Observation of enterovirulent bacteria adhering to the brush border of cultured human fully differentiated colon cancer cells. (A) Scanning and
transmission electron microscopy micrographs show interaction of CFA/I-positive ETEC with microvilli of fully differentiated parental Caco-2 cells (immuno-
labeling reveals the ETEC fimbrial adhesins mediating attachment), EAEC bacteria forming clusters of bacteria at the brush border of fully differentiated parental
Caco-2 cells, interaction of AIEC with microvilli of fully differentiated Caco-2/TC7 clone cells, and typical, well-formed and compact tEPEC microcolonies at the
brush borders of fully differentiated HT-29 Glc�/�, parental Caco-2, and T84 cells. (B) Transmission electron microscopy micrographs show the diffuse adhesion
of Afa/Dr DAECDAF/CEACAM on the brush border of fully differentiated Caco-2/TC7 clone cells. Note that a single bacterium attracted numerous microvilli. (C)
Confocal laser scanning microscopy examination of immunofluorescence labeling micrographs shows the receptor clustering around Afa/Dr DAECDAF/CEACAM

bacteria adhering onto the brush border of fully differentiated Caco-2/TC7 clone cells. Double-immunofluorescence labeling is with anti-DAF antibody (green)
and anti-Dr adhesin antibody (red). (The three tEPEC micrographs in panel A are reprinted from reference 467 with permission from the International Society
of Differentiation; the micrographs in panel B are reproduced from reference 875 with permission from BMJ Publishing Group Ltd.)
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these E. coli strains may constitute a new, potentially pathogenic E.
coli group designated adherent-invasive E. coli (AIEC) (205),
which display (i) the ability to adhere to cultured human intestinal
cells with an adhesion index equal to or greater than 1 bacterium
per cell, (ii) the ability to invade cultured human intestinal cells
with an invasion index equal to or greater than 0.1% that of the
original inoculums (205), (iii) the involvement of host cell actin
polymerization and microtubule recruitment in bacterial uptake,
(iv) the ability to survive and to replicate within macrophages, and
(v) the absence of any known cell invasion determinants. It has
been hypothesized that the LF82 genome has evolved from those
of extraintestinal pathogenic E. coli (ExPEC) B2 strains by the
acquisition of Salmonella and Yersinia isolated or clustered genes
or predicted coding sequences located on plasmids and at various
loci on the chromosome (441). Following the isolation of the pro-
totype AIEC LF-82 strain, other CD- and UC-associated AIEC
strains have been isolated and characterized (442–449). The re-
sults indicate that AIEC isolated from IBD patients has not
evolved from a single ancestral background but corresponds to a
group of bacteria that have been able to take advantage of an “IBD
microenvironment” and probably share some common genes
with ExPEC (446). Effectively, ExPEC and AIEC strains share sim-
ilar virulence gene sets, and certain strains are phylogenetically
related to the B2 phylogroup, but most ExPEC strains do not
behave like AIEC strains (450–452). Analysis of the genomes of E.
coli isolates obtained from patients with UC and CD (453) and of
the genomes of AIEC strains LF82 (441), UM146 (452), NRG857c
(O83:H1) (451), and HM605 (450) reveals that the genome of
AIEC is characterized by the absence of known virulence factors
composing the T3SS of enteroinvasive Salmonella, Yersinia, and
Shigella strains and by the presence of a number of ExPEC-related
virulence determinants such as the pap, sfa, cdt, sat, and hly genes
and of the genes of ExPEC-associated genomic islands, but impor-
tantly, with little or no evidence of group-specific determinants.
However, it is impossible to exclude the possibility that AIEC ex-
presses so-far-unidentified AIEC-specific genes that could be IBD
specific (451). On the basis of what is known about AIEC patho-
genesis and the absence of any demonstration that AIEC is directly
involved in the development of IBD lesions, so far it seems rea-
sonable to think that AIEC strains constitute a heterogeneous new
pathovar of enterovirulent E. coli with genomic profiles that are
indistinguishable from those of ExPEC isolates but which display
particular proinflammatory virulence traits.

AIEC strains isolated from ileal specimens from CD patients
with chronic lesions and early recurrent lesions, including strain
LF82, have the ability to adhere onto the brush borders of fully
differentiated Caco-2 (205, 415, 416, 418) and T84 (454, 455) cells
(Fig. 8A and Table 2). The role of human CEACAM6 has been
demonstrated in vitro and in vivo. In isolated human ileal entero-
cytes, LF82 adhesion at the brush border was inhibited by an anti-
CEACAM6 antibody (456). Moreover, in fully differentiated
Caco-2 cells, colocalization between CEACAM6 and adherent
LF82 bacteria has been observed at the brush border (456). AIEC
strains LF9. LF15, LF31, and LF82 entered within fully differenti-
ated T84 cells at a level 2.5-fold lower than S. Typhimurium (454).
When examining mucosa-associated FimH-positive E. coli strains
isolated from IBD and non-IBD pediatric patients for their ability
to bind onto fully differentiated Caco-2 cells, the results showed a
higher site substitution rate in the fimH gene, which, together with
a higher number of mutations, influences the adhesiveness of the

strains (457). Examining the fimH genes of AIEC and non-AIEC
strains, Dreux et al. (458) concluded that AIEC strains predomi-
nantly express FimH with amino acid mutations of a recent evo-
lutionary origin. Moreover, the authors showed that point muta-
tions in FimH confer on AIEC bacteria a significantly higher
ability to adhere to CEACAM-expressing fully differentiated T84
cells. Interestingly, the replacement of fimH from LF82 with fimH
from E. coli K-12 decreases the ability of bacteria to persist and to
induce severe colitis and gut inflammation in infected CEABAC10
transgenic mice. The role of OmpC in the adhesion and cell entry
of LF82 has been demonstrated using fully differentiated T84 cells
(459). AIEC strains LF82 and O83:H1 display a similar ability to
adhere to and invade fully differentiated Caco-2BBe 2 clone cells
and T84 cells (449). In AIEC O83:H1, the flagellum plays a pivotal
role in the adhesion to and invasion of fully differentiated Caco-
2BBe 2 clone cells and T84 cells, since a nonflagellated E. coli
O83:H1 strain loses both adhesiveness and invasiveness (449).
Several bacterial pathogens produced outer membrane vesicles
(OMVs) for delivery of virulence factors into host intestinal cells.
In fully differentiated Caco-2 cells, LF82 infection promotes the
apical overexpression of endoplasmic reticulum (ER)-localized
stress response chaperone Gp96, which acts as a receptor for LF82
OMVs and in turn plays a role in the internalization of LF82 bac-
teria (460).

(iv) EPEC. EPEC strains are a frequent cause of infantile diar-
rhea in the developing world (302, 304, 413, 414). EPEC strains
typically produce LA by forming randomly distributed well-
formed and compact microcolonies at the cell surface of intestinal
cells expressing a brush border (461). Recently, two subclasses of
EPEC have been defined and designated typical EPEC (tEPEC)
and atypical EPEC (aEPEC) (462, 463).

Knutton et al. (464) were the first to report the presence of
well-formed and dense tEPEC microcolonies in fully differenti-
ated Caco-2 cells (Fig. 8A and Table 2). LA of tEPEC is mediated
by the bundle-forming pili (BFP), a type IV pilus encoded by
pEAF which interconnects bacteria within the dense microcolo-
nies, thus promoting their particular adhesion organization in the
brush borders of fully differentiated Caco-2 cells (465, 466).
tEPEC microcolonies have been also observed on infected fully
differentiated HT-29 Glc�/� and T84 cells, and the formation of
tEPEC microcolonies increases as the brush border develops dur-
ing the cell differentiation of Caco-2 cells (467). Importantly, an-
imal EPEC-like pathogens such as Citrobacter rodentium (468),
rabbit diarrheagenic E. coli (RDEC-1) (469–477), and rabbit
EPEC (REPEC) (472, 476–484), which express virulence factors
similar those of human tEPEC, have been shown to produce iden-
tical structural and functional damage in animal intestinal barriers
and in cultured, fully differentiated human intestinal cells.

It has been shown that the basic difference between tEPEC and
aEPEC is the presence of pEAF in tEPEC and its absence in aEPEC
(485, 486). Localized adherence-like (LAL), DA, and AA patterns
have all been observed for aEPEC strains adhering to fully differ-
entiated Caco-2 cells (487, 488).

(v) EHEC. The noninvasive EHEC strains are the cause of hem-
orrhagic colitis, nonbloody diarrhea, acute intestinal inflamma-
tion, and hemolytic uremic syndrome (304, 413, 414, 489). EHEC
strains have evolved from EPEC strains by acquiring bacterio-
phages that encode Shiga-like toxins (Stx) (307), but there are
clear differences between EPEC and EHEC pathogeneses (305,
490). Stx-producing EHEC, mainly the O157 strains, have been
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classified as locus of enterocyte effacement (LEE) positive in the
pathogenic group of Stx-producing E. coli (STEC) (491). It has
been noted that some other strains of STEC are LEE negative,
including serogroups O26, O45, O103, O111, and O145 (491).
Strains of EHEC belonging to serogroup O157 are most com-
monly associated with severe human diseases and express specific
sets of virulence genes, including those encoding Shiga toxins (stx1

and stx2), intimin (eae), hemolysin (hlyA), and long polar fimbriae
(lpf1 and lpf2) (490, 491).

EHEC forms dense and localized microcolonies at the brush
borders of fully differentiated T84 and Caco-2 cells (464, 492)
(Table 2). The role of LEE gene transcription in the adhesion of
EHEC has been analyzed using fully differentiated Caco-2 cells
(493–496). OmpA and the long polar fimbriae of EHEC are two
other factors that allow EHEC to adhere to the brush border of
fully differentiated Caco-2 cells (497, 498). EHEC encodes adher-
ence-associated loci that are involved in the initial diffuse adher-
ence, and the intimin-Tir interaction is required for the subse-
quent development of EHEC microcolonies at the brush border of
fully differentiated Caco-2 cells (496). The genes yhiE, yhiF, and
toxB either up- or downregulate the expression of T3SS proteins
triggering adhesion of EHEC within fully differentiated Caco-2
cells (499, 500). EHEC strains that express type 4 pili designated
hemorrhagic E. coli pili (HCP) adhere to fully differentiated
Caco-2 and T84 cells, but this adherence is not completely abol-
ished by hcpA deletion, indicating that other colonization factors,
e.g., intimin and E. coli common pilus, also contribute to EHEC
adherence to these cells (501). The type V secreted autotrans-
porter serine protease EspP and the enterohemolysin translocator
EhxD of EHEC are involved in adhesion and biofilm formation in
fully differentiated T84 cells (502, 503).

EHEC strains are noninvasive when they infect the apical do-
mains of fully differentiated Caco-2 and T84 cells. The LEE-neg-
ative EHEC strain O113:H21 is internalized within fully differen-
tiated Caco-2 cells, and intracellular bacteria are located within a
membrane-bound vacuole, whereas in contrast, the EHEC strain
O157:H7 remains extracellular and intimately attached to the ep-
ithelial cell surface. Curiously, EHEC strains have been found to
be invasive in undifferentiated HCT-8 cells (206, 214, 215).

(vi) EAEC. EAEC strains are emerging as significant diarrheal
pathogens in diverse population groups and are most commonly
associated with pediatric diarrhea in developing countries (304,
413, 414, 504, 505). EAEC is also linked to diarrhea in adults,
including AIDS patients and travelers, and has been a cause of
food-borne outbreaks in industrialized countries. EAEC patho-
genesis starts with adherence to the epithelial cells lining the ter-
minal ileum and colon in an aggregative pattern, in which bacteria
adhere to each other in a “stacked-brick” configuration (419) in-
volving several different hydrophobic aggregative adherence fim-
briae, including aggregative adherence fimbriae I and II (AAF/I
and AAF/II), which are related to the Afa/Dr family of adhesins
(505). Some strains of EAEC may then produce cytotoxins, in-
cluding the enteroaggregative E. coli ST (EAST1), a partial homo-
logue of the ETEC STa toxin, and Shigella enterotoxin 1 (ShET1)
(505). Moreover, several EAEC strains produce toxins known as
Pet (plasmid-encoded toxin) and Pic (protein involved in intesti-
nal colonization) that belong to the subfamily of serine protease
autotransporters of Enterobacteriaceae (SPATE) toxins (306, 506),
which are secreted via the type V secretion pathway (280).

Nataro et al. (507) first reported the adhesion of EAEC at the

brush borders of fully differentiated T84 and Caco-2 cells (Fig. 8A
and Table 2). EAEC strain C555-91 adheres via AAF/I and AggR
adhesive factors onto fully differentiated T84 cells (508). Pereira et
al. (509) have reported that EAEC invades, persists, and replicates
within fully differentiated T84 and Caco-2 cells for extended
times.

(vii) DAEC. DAEC strains have been identified from their DA
pattern on cultured epithelial cells (419, 461). DAEC is a hetero-
geneous group of enterovirulent E. coli strains (304, 412–414) in-
cluding two subgroups, the non-Afa/Dr DAEC strains expressing
AIDA-I adhesin (510) and the Afa/Dr DAEC strains (511, 512).

The diarrhea-causing, non-Afa/Dr DAEC strain 2787 (O126:
H27) expresses AIDA-I adhesin and displays diffuse cellular adhe-
sion to nonintestinal and nonpolarized epithelial Hep-2 and HeLa
cells (510) (Table 2). AIDA-I belongs to a subgroup of autotrans-
porter proteins that includes the TibA adhesin/invasin, associated
with some ETEC strains, and the Ag43 autoaggregation factor that
is found in most E. coli strains (513). Despite its EPEC serotype,
strain 2787 is not positive for a probe of the eae gene (which codes
for EPEC intimin), does not secrete Esp proteins, and is not able to
induce the A/E lesion (514). AIDA-I adhesin contains putative
binding sites (515), recognizes a 119-kDa, non-GPI, membrane-
bound glycoprotein, and induces ligand-receptor clustering in
nonintestinal and nonpolarized epithelial cells (516). It has been
noted that despite the intestinal origin of the diarrheic AIDA-I-
positive strain 2787, no information is available about the inter-
action and cell responses in fully differentiated Caco-2 and T84
cells. An adhesin known as CF16K that triggers DA of non-Afa/Dr
DAEC in fully differentiated Caco-2 cells has been found in 9.8%
of DAEC strains isolated in France (517). The CS31A adhesin and
unknown adhesive factors of ET5, 3431, B6, and 0181 of human
diarrheic E. coli strains (nonpositive for tEPEC genetic determi-
nants) allow DA in fully differentiated Caco-2 cells (432). It is
interesting to note that an association of CS31A and another ad-
hesive factor belonging to the Afa/Dr family has been found in
70% of the diarrheic E. coli isolates examined.

The Afa/Dr DAEC strains have been found to be associated
with urinary tract infections (UTIs) (pyelonephritis, cystitis, and
asymptomatic bacteriuria) and with diarrhea in infants but not in
adults (412, 518). These E. coli strains are generally related to the
B2 phylogenetic group (519). The structural assembly genes cod-
ing for Afa/Dr DAEC adhesins have a similar organization, con-
sisting of operons of at least five genes (511, 512). Genes A to D
encode accessory proteins, and gene E encodes the major adhesin
subunit AfaE-I, AfaE-II, AfaE-III, AfaE-V, DraE, or DaaE. These
adhesins are assembled via the chaperone-usher pathway (260,
520). The DraE adhesin subunit expresses two separate adhesion
domains; the first recognizes the human decay-accelerating factor
(hDAF) at the complement control protein (CCP) 2 and 3 do-
mains (521–524), and the second recognizes the N domains of
several hCEACAMs (525–529). The physiological role of hDAF is
to inhibit the complement cascade at the level of the critical C3
convertase step for the protection of normal cells from comple-
ment-mediated attack during innate activation, and in addition
hDAF serves as a receptor for certain strains of pathogenic E. coli,
Helicobacter pylori, and certain types of enteroviruses (530).
CEACAM belonged to a group of mammalian immunoglobulin-
related glycoproteins involved in cell-cell recognition and modu-
lation of cellular processes that include the shaping of tissue archi-
tecture and neovascularization, regulation of insulin homeostasis,
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T-cell proliferation, and cancers, and some membrane-bound
CEACAMs have been identified as receptors for host-specific vi-
ruses and bacteria in mice and humans (531, 532). On the basis of
receptor recognition or the lack thereof, two classes of DAEC
strains have recently been defined: Afa/Dr DAEC and non-Afa/Dr
DAEC (512). The Afa/Dr DAEC class includes E. coli strains har-
boring the AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, or
NFA-I adhesins, which all have the same genetic organization. The
first subclass of Afa/Dr DAEC includes the AfaE-III, Dr, and
F1845 adhesins, which bind to both human hDAF and human
epithelial CEACAMs (hCEACAM1, hCEA, and hCEACAM6)
(Afa/DrDAF/CEACAMs DAEC). The second subclass of Afa/Dr
DAEC includes the AfaE-I and Dr-II adhesins, which bind to
hDAF but not to hCEACAMs (Afa/DrDAF DAEC).

Afa/DrDAF/CEACAMs DAEC bearing the F1845 adhesin binds
diffusely at the brush borders of fully differentiated Caco-2 and
T84 cells by recognizing a membrane-bound receptor (Fig. 8B and
Table 2). Attachment takes place during the enterocytic differen-
tiation of the cells and parallels the apical appearance of the brush
border (533, 534). E. coli strains bearing Dr, Afa-I, or C1845 ad-
hesin adhere to both undifferentiated and fully differentiated
Caco-2 cells (533, 535). The Dr or F1845 adhesin promotes hDAF
and hCEA receptor clustering around bacteria adhering to the
brush border of fully differentiated Caco-2 cells (Fig. 8C) (526).

Dr- and F1845-positive Afa/DrDAF/CEACAMs DAEC enters api-
cally infected, fully differentiated Caco-2 cells (536) to a similar
extent as tEPEC. When infecting the basal domain of fully differ-
entiated Caco-2/TC7 cells, the level of internalized Dr-positive
bacteria is significantly higher than after apical infection, and the
bacteria use basolateral �1 integrin for internalization. It is note-
worthy that apical entry of Dr-positive bacteria is greatly enhanced
after TJ opening. Lipid rafts play a role in the cell entry of Dr- and
F1845-positive Afa/DrDAF/CEACAMs DAEC into Caco-2/TC7 cells,
since the ganglioside GM1 and VIP21/caveolin are recruited around
adhering bacteria, and extraction of the membrane cholesterol with
methyl-beta-cyclodextrin disorganizes the membrane lipid rafts and
inhibits the cell entry of Afa/DrDAF/CEACAMs DAEC (536, 537). It is
important to note that it has been established that the cell entry of
Afa/DrDAF/CEACAMs DAEC into epithelial cells is triggered by their
major adhesin subunits E (538, 539). The role of the D subunits of
Afa/DrDAF/CEACAMs DAEC, known as invasins (540, 541), in the
entry into epithelial cells remains controversial (542–547).

Structural and Functional Injuries

Enterovirulent bacteria cause diarrhea by means of sophisticated
strategies that allow them to hijack the cellular machinery to abol-
ish or manipulate the normal transportation of nutrients and the
water balance by altering ion channels and/or exchangers and wa-
ter channels (304, 309, 548) (Fig. 2). The intestinal brush border
consists of tightly packed, uniform, apical microvilli. The mi-
crovillus membrane is the first cell barrier encountered by entero-
virulent bacteria infecting the host from the luminal intestinal
compartment. The brush border membrane is supported by a
cytoskeleton composed of actin microfilaments and several actin-
binding proteins, including the F-actin cross-linkers, villin and
fimbrin, fodrin, and plastin-1, and a protein complex composed
of brush border myosin I and II associated with calmodulin, which
connect the F-actin bundles to the plasma membrane (85–87).
The microvillus membrane of mature enterocytes contains hydro-
lases (108), transporters involved in nutrient uptake (549), hexose

transporters (550), and channels and transporters acting in ion
transport (128, 129, 551). Elegant studies have revealed the mo-
lecular mechanisms by which enterovirulent bacteria, via the ac-
tion of their T3SS-translocated bacterial effectors or secreted and
endocytosed cytotonic toxins, affect the functionality of mem-
brane-associated proteins involved in the control of nutrient and
ion intestinal transports (551) and NHE antiporters localized at
the membrane of the brush border or basal membrane (128, 129,
241). It is noteworthy that the role of the enteric nervous system in
the enterovirulent bacterium-induced modifications of the local-
ization or activity of structural and functional cell proteins con-
trolling the intestinal transport of nutrients and ions is now be-
ginning to be investigated. Mainly as a result of in vitro
experiments using appropriate cultured human intestinal cell
lines representing models of human enterocytes or colonic cells,
we can briefly summarize that diarrhea promoted by enteroviru-
lent E. coli is the result of ETEC adhering to small bowel entero-
cytes and inducing watery diarrhea by secreting heat-labile and/or
heat-stable enterotoxins. tEPEC, aEPEC, and EHEC all have the
ability to form A/E lesions, and this is the main pathogenic mech-
anism in both groups (287, 303, 304, 412, 413, 485). This struc-
tural lesion results from intimate bacterial adherence, local mi-
crovillus effacement and, the accumulation of polymerized actin
and other elements of the cytoskeleton underneath adherent bac-
teria, which form pedestal-like structures. EHEC also produces
Stxs (307). EAEC produces secretory enterotoxins and cytotoxins.
EIEC invades colonic epithelial cells, resides within intracellular
vacuoles, lyses the phagosome, moves within the cell cytoplasm,
and finally uses cell-to-cell spread for penetrating neighboring
cells. Afa/Dr DAEC does not form these A/E lesions, but it too
triggers a loss of microvilli resulting from disorganization of the
brush border cytoskeleton that promotes the shedding of mi-
crovilli. In all cases, the loss of microvilli results from a dramatic
disappearance of the membrane-anchored proteins that control
absorption/secretion functions and leads to dramatic defects in
nutrient and electrolyte transportation.

Listeria. LLO induces an increase in short-circuit current and
chloride secretion in fully differentiated HT-29/B6 cells (552).

V. cholerae. V. cholerae induces functional injuries at the brush
border of enterocytes without affecting the structure of the mi-
crovilli. V. cholerae promotes severe dysfunctions in enterocytes as
the result of the cytotoxic or cytotonic actions of toxins (Table 3).
CT enters into fully differentiated T84 cells via apical but not
basolateral membranes (553). Binding of toxin B subunits to gan-
glioside GM1 localized in the membranes of microvilli of fully
differentiated Caco-2 and T84 cells is followed by the transloca-
tion of the enzymatically active A subunit across the membrane
and then retrograde traffic into the cells (554, 555) and subsequent
activation of the cAMP adenylate cyclase located on the basolat-
eral membrane (556–560). Fully differentiated, mucus-secreting
HT-29-18 N2 cells have been also used to investigate the binding
of CT to human intestinal cells (561). Antibodies directed against
CT produce a concentration-dependent blockade of CT-induced
Cl� secretion and completely inhibit binding of CT to apical cell
membranes of fully differentiated T84 cells (562). The enzymati-
cally active A subunit of CT, which contains the ER retention
signal KDEL, interacts directly with endogenous KDEL receptors
in fully differentiated T84 cells and undergoes retrograde move-
ment through the Golgi cisternae and endoplasmic reticulum in
order to produce the biological activity (563). In V. cholerae-in-
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fected fully differentiated Caco-2 cells, two amino acid transport-
ers, SLC7A11 and SLC6A14, are upregulated, and five transport-
ers (AQP10, a member of the water channel family of
transmembrane proteins that transport water as well as glycerol
and other solutes of small molecules [24, 25, 564], the Mg2� chan-

nel transient receptor potential cation channel subfamily M mem-
ber 6 [TRPM6], the serotonin transporter [SERT] controlling the
uptake of serotonin that is involved in intestinal absorption and
secretion of electrolytes and fluids, the vitamin C transporter
[SVCT1], and the zinc transporter [ZnT4]) are all downregulated,

TABLE 3 Overview of functional injuries in fully differentiated human colon cancer cell lines

Pathogen Cell line
Pathogenicity island, virulence
factor, or cellular protein Effect Reference(s)

Listeria HT-29/B6 LLO Increase of short-circuit current, chloride secretion, and
transepithelial flux

552

Vibrio cholerae Caco-2 Activation of SLC7A11 and downregulation of
SLC6A14 transporters, AQP10, Mg2� channel
TRPM6, SERT, SVCT1, ZnT4

134

Caco-2 Cholera toxin Increased expression of decay-accelerating factor and
�1-antichymotrypsin

565

Caco-2 Cholera toxin Downregulation of AMPs LL-37 and HBD-1 574

ETEC Caco-2 LT Inhibition of PEPT1 573
Caco-2, T84 LT Protein kinase A-, Erk1/2-, and COX-2-dependent

downregulation of cathelicidin hCAP-18/LL-37 and
HBD-1

574

Caco-2 BBe ST Activation of exocytosis of syntaxin 3 and CFTR 601
Caco-2 ST Stimulation of cGMP-chloride secretion 595–598
T84 ST Increase of net secretory transepithelial vol flux, short-

circuit current, and net secretory Cl flux
599

T84 ST F-actin cytoskeleton-dependent activation of Na�/K�/
2Cl� cotransport and Cl� secretion

600

Caco-2 BBe LT, Sta Activation of exocytosis of syntaxin 3 and CFTR 601

EIEC HT-29.cl19A, Caco-2 Undetermined Increase of chloride secretion 672

tEPEC Caco-2 EspA, EspB, EspD Roles in the increase in electrolyte transport 611, 612
T84 Independently of T3SS and A/E

lesion
Decrease of cAMP-dependent ion secretion by

downregulation of the brush border-associated CFTR
616

Caco-2, T84 T3SS dependent Observation of changes in activities of NHE isoforms
(increase for apical NHE2, decrease for apical NHE3,
and increase for basolateral NHE1

613

Caco-2 Undetermined Ca2�-, PKC-�- and PKC-ε-dependent increase of
NHE2 activity

615

Caco-2 Undetermined Inactivation of Na�/glucose cotransporter SGLT-1 606
Caco-2 Map Proteolysis of NHERF1 617

Inhibition of the apical MCT1 618
Caco-2 T3SS dependent Inhibition of apical Cl�/OH� exchange activity 620

Inhibition of vitamin B1 uptake 621
Caco-2, T84 EspG, EspG2 Decrease of apical activity of SERT 622
Caco-2 T3SS dependent Cdx2-dependent upregulation and increase of activity

of hPEPT1 transporter
623

Caco-2, HT-29.cl19A Undetermined Roles in inhibitory effect on apical sodium-dependent
bile acid transporter

624

EHEC Caco-2 T3SS, Stx1 Increases apical galectin-3 expression and secretion,
impairs trafficking, and promotes apical protein
mistargeting of villin, DPP IV, and NHE-2

639, 640

EAEC T84 EAST1 Increase in short-circuit current and net ion transport 646

Afa/DrDAF/CEACAMs

DAEC
Caco-2 Dr, F1845 Cytoskeleton-dependent loss of expression of brush

border-associated SI, DPP IV, glucose transporter
SGLT1, and fructose transporter GLUT5 and
abolition of sucrase and DPP IV enzyme activities

649, 650

Caco-2 Unknown factor Blockade of SI and DPP IV biosynthesis without
affecting mRNA levels and enzyme stability

650
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mimicking the situation in infected patients (134). The increased
expression of DAF and SERPINA3 protein (�1-antichymotryp-
sin) in CT-stimulated fully differentiated Caco-2 cells has been
also found in the intestinal mucosa during acute cholera (565).

Enterovirulent E. coli. (i) ETEC. To cause diarrhea, ETEC elab-
orates and delivers LT and/or ST, which elicit watery, cholera-like
diarrhea (Table 3). Using fully differentiated Caco-2 and T84 cells,
it has been demonstrated that ETEC strains use their adhesive
factors to deliver toxins efficiently to the brush border expressing
the receptors for ETEC enterotoxins (566, 567). LT, like the Vibrio
cholerae enterotoxin, stimulates the cAMP adenylate cyclase in
fully differentiated Caco-2 cells (568–572). In contrast to CT
(560), LT is not localized within caveola-like detergent-insoluble
membranes of fully differentiated T84 cells (567). Apical entry,
but not basolateral entry, of LT into fully differentiated T84 cells
leads to the production and activation of a toxin A through the
proteolytic action of a serine protease (553). In fully differentiated
Caco-2 cells, LT inhibits the activity of PEPT1 (573). LT transcrip-
tionally downregulates two human antimicrobial peptides, cathe-
licidin hCAP-18/LL-37 and HBD-1, by activating several intracel-
lular signaling pathways involving protein kinase A, Erk1/2, and
cyclooxygenase 2 (COX-2) downstream of cAMP accumulation
and inducible cAMP early repressor in fully differentiated HT-29,
Caco-2, and T84 cell lines (574).

ST stimulates the cGMP adenylate cyclase in fully differenti-
ated T84 cells (575–577) (Table 3). After binding to fully differen-

tiated Caco-2 cells, ST leads to receptor activation followed by the
production of high intracellular levels of cGMP (578, 579). The
characteristics of ST B bound to the cell membrane (580–583),
the characterization and partial purification of the receptor of ST
(584), the regulation of the receptor (585–593), and the internal-
ization of the receptor (594) have been extensively investigated in
fully differentiated T84 cells. ST induces cGMP-chloride secretion
in fully differentiated Caco-2 cells (595–598). ST increases the net
secretory transepithelial volume flux, short-circuit current values,
and net secretory Cl flux in fully differentiated T84 cells (599).
Na�/K�/2Cl� cotransport and Cl� secretion induced by ST have
been found to be dependent on the organization of the F-actin
cytoskeleton in fully differentiated T84 cells (600). Both LT and
STa activate the exocytosis of syntaxin 3, an intestine-specific sol-
uble N-ethylmaleimide-sensitive factor attachment receptor, and
a functional CFTR chloride channel that colocalize at the apical
domain of fully differentiated Caco-2 BBe clone cells (601). It is
noteworthy that in fully differentiated T84 cells, STa and guanylin
did not increase paracellular permeability, but STa elicited a slight
reduction in TER whereas guanylin did not (602).

(ii) EPEC. The main intestinal cell lesion promoted by tEPEC
and aEPEC strains is the A/E histopathology, first observed by
Knutton et al. (464) in fully differentiated Caco-2 cells, which is
characterized by effacement of brush border microvilli after inti-
mate adherence of the bacterium to the epithelial cell membrane
(Fig. 9A and Table 4). The microvillous lesion results from the

FIG 9 Structural and functional injuries caused by enterovirulent bacteria adhering to the brush border of cultured human fully differentiated colon cancer cells.
(A) Transmission electron microscopy micrographs show A/E lesions of microvilli and pedestal formation by tEPEC adhering to the brush border of fully
differentiated parental Caco-2 cells. The left micrograph shows tEPEC starting the effacement of a microvillus. The right micrograph shows the achieved
effacement of a microvillus by tEPEC and the formed pedestal. (B) Transmission and scanning electron microscopy micrographs show the disappearance of the
brush border in fully differentiated Caco-2/TC7 clone cells infected with Afa/Dr DAECDAF/CEACAM. Immunofluorescence labeling and confocal laser scanning
microscopy examination (x-y section) show the loss of apical F actin and brush border-associated DPP IV hydrolase in fully differentiated Caco-2/TC7 clone cells
infected with Afa/Dr DAECDAF/CEACAM. (The two tEPEC micrographs in panel A are reprinted from reference 467 with permission from the International Society
of Differentiation; the two Afa/Dr DAEC micrographs in panel B are reprinted from reference 647.)
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action of T3SS in translocating into the cells an assortment of
effector proteins, encoded both within and outside the LEE, which
generate various coordinated cell signaling events (287). The LEE
is organized into 5 operons (LEE1 to LEE5), where LEE1 to LEE3
encode T3SS proteins and the LEE-encoded regulator, LEE4 en-
codes the secreted proteins that form the external part of the T3SS
used to translocate effector proteins into the host cell, and LEE5
encodes the adhesin intimin and its translocated receptor, Tir.
Membrane-inserted Tir is phosphorylated at the C-terminal do-
main, where it recruits the cellular protein Nck and activates N-
WASP, leading to Arp2/3 complex-mediated actin polymeriza-
tion. Knutton et al. (464) observed the presence of concentrated
cellular F actin at the sites of attachment in fully differentiated
Caco-2 cells and reported that after effacement of the microvillus,
tEPEC bacteria are seen localized on a pedestal-like structure.
tEPEC BFP, adhesin intimin, and several translocated T3SS effec-
tors have been identified as intimately adhering to fully differen-
tiated Caco-2 cells (603, 604). tEPEC T3SS effectors EspA, EspB,
and EspD have been shown to be required for the formation of the
A/E lesions in fully differentiated Caco-2 cells (605). tEPEC-in-
duced effacement of microvilli in fully differentiated Caco-2 cells
requires the cooperative action of T3SS effectors Map (mitochon-
drion-associated protein), EspF, and Tir as well as intimin (606).
Microvillus effacement activity of the tEPEC protein EspF in the
Caco-2/TC7 cells was dependent on its N-WASP binding motif
(93). EspB binds to myosin and blocks its interaction with actin in
fully differentiated Caco-2 cells (607). tEPEC uses the clathrin-
coated pit components Eps15 and epsin1, but not adaptor protein
2 (AP-2), in clathrin-dependent pedestal formation in fully differ-

entiated Caco-2 cells (608). tEPEC infection of clone Caco-2/B7
results in a T3SS-dependent recruitment of ZO-1 at the actin-rich
pedestals (92). Moreover, tEPEC recruits and subsequently
sequesters cell surface nucleolin around the bacteria present in
tEPEC microcolonies in fully differentiated Caco-2 cells, a phe-
nomenon that is unrelated to tEPEC-induced pedestal formation
or microvillus effacement but apparently is related to the tEPEC-
induced disruption of the epithelial barrier function (609).

aEPEC strains have been shown to induce A/E lesions on the
microvilli in fully differentiated Caco-2 cells without F-actin con-
densation (610) (Table 4).

As a consequence of the tEPEC-induced A/E lesions described
above, which lead to the disappearance of the brush border mi-
crovilli, but also independently of A/E lesions, functional injuries
develop in tEPEC-infected fully differentiated intestinal cells
(Table 3). tEPEC stimulates electrolyte transport in fully differen-
tiated Caco-2 cell monolayers through the action of the T3SS-
translocated effectors EspA, EspB, and EspD (611, 612). tEPEC
affects the NHE isoforms, the major mediators of Na� absorption,
increasing the activity of apical isoform NHE2, decreasing that of
apical NHE3, and increasing that of the basolateral isoform NHE1
via a T3SS-dependent mechanism in fully differentiated Caco-2
and T84 cells (613). There was no change in the basolateral K�

channel or Na�/K�/2Cl� cotransport activity in tEPEC-infected
fully differentiated T84 cells (614). Signal transduction cascades
involving Ca2�, as well as protein kinase C alpha (PKC-�) and
PKC-ε, occur independently of A/E lesions but require tEPEC
adhesion and are responsible for the increase in NHE2 activity in
fully differentiated Caco-2 cells (615). Independently of flagellin,

TABLE 4 Overview of structural injuries at the brush borders of fully differentiated human colon cancer cell lines

Pathogen Cell line
Pathogenicity island, virulence
factor, or cellular protein Effect Reference(s)

Salmonella Caco–2 Undetermined Reorganization of the F–actin cytoskeleton, disruption of the brush
border with elongation of the microvilli, and membrane
remodeling for cell entry

374–377, 389

Caco-2 SopE2, SopB, SipA Reorganization of the F-actin cytoskeleton and membrane
remodeling for cell entry

390

tEPEC Caco-2 Undetermined A/E microvillus lesion and presence of concentrated F actin at the
pedestal like structure

464

Caco-2 Intimin, T3SS effectors Identification for A/E lesion 603, 604
Caco-2 EspA, EspB, EspD Identification for A/E lesion 605
Caco-2 Undetermined Role of Eps15 and epsin1 in clathrin-dependent pedestal formation 608
Caco-2 Map, EspF, Tir, intimin Microvillus effacement 606
Caco-2/TC7 EspF Microvillus effacement dependent on its N-WASP binding motif 93

aEPEC Caco-2 Undetermined A/E lesion without F-actin condensation 610
EHEC Caco2, T84 Undetermined A/E lesion 464, 492
EAEC Caco-2, T84 Undetermined Loss of microvilli and subnuclear vacuolization only in T84 cells 507, 644, 645

T84 Pet No structural cytotoxic effect 645

Afa/DrDAF/CEACAMs

DAEC
Caco F1845 Disassembly of the apical F-actin cytoskeleton in turn affecting the

structural organization of the brush border and the loss of
microvilli

647, 649

Caco-2/TC7 Dr, F1845 Disassembly of F-actin cytoskeleton by NETs produced by infected
PMNL-like human myeloid cell line PLB-985

813

Caco-2/TC7 Dr, F1845 Disassembly of apical F-actin cytoskeleton 813
T84 F1845 Induction of HIF-1� leads to loss of E-cadherin and cytokeratin 18

and a rise in fibronectin indicating the induction of a cell
epithelial-to-mesenchymal transition-like phenotype

820
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T3SS, and A/E lesions and independently of loss of TER and TJ
alteration, tEPEC decreases the cAMP-dependent ion secretion in
fully differentiated T84 cells by promoting the downregulation of
the brush border-associated CFTR involved in the control of chlo-
ride secretion (616). tEPEC rapidly inactivates the Na�/glucose
cotransporter SGLT1 in fully differentiated Caco-2 cells by mul-
tiple mechanisms that are either dependent on or independent of
the A/E lesion (606). The T3SS effector Map induces brush border
elongation in fully differentiated Caco-2 cells and proteolysis of
Na�/H� exchanger regulatory factor 1 (NHERF1) (617). T3SS-
dependent inhibition of the short-chain fatty acid absorption me-
diated by apical MCT1 develops in tEPEC-infected fully differen-
tiated Caco-2 cells (618). The tEPEC T3SS effectors EspG and
EspG2 are involved in the inhibition of apical anion exchanger
DRA, functionally coupled to CFTR in the upper gastrointestinal
tract to mediate chloride and bicarbonate secretion and to NHE3
in the lower gastrointestinal tract to mediate electroneutral NaCl
absorption (619), corresponding to a decreased Cl�/HCO3/OH�

exchange activity in fully differentiated Caco-2 and T84 cells
(620). tEPEC T3SS-dependent inhibition of the uptake of the wa-
ter-soluble vitamin B1 (thiamine) has been observed in fully dif-
ferentiated Caco-2 cells (621). The apical activity of SERT is de-
creased following tEPEC infection of fully differentiated Caco-2
cells in a T3SS-dependent manner, but its expression at the brush
border is unaffected (622). Intimate attachment of tEPEC to fully
differentiated HT29-Cl.19A cells is followed by increased hPet1
expression and activity by activation of the transcription factor
Cdx2 (623). Deletion of the escN, espA, espB, and espD genes,
which encode parts of T3SS, and the gene encoding BFP revealed
that both early and intimate tEPEC attachment are needed for the
EPEC inhibitory effect on the apical sodium-dependent bile acid
transporter to occur in fully differentiated Caco-2 cells (624). It is
interesting to note that apical AQP2 and basolateral AQP3 in
colonocytes are mislocalized from their normal location along cell
membranes to the cell cytoplasm in mice infected with the A/E
pathogen C. rodentium, indicating a contribution to the diarrhea
caused by this organism (625). The mechanisms by which tEPEC
strains affect the distribution and activity of AQPs remain to be
investigated in cultured, fully differentiated intestinal cells.

EspC is an tEPEC toxin belonging to the SPATE toxin family
(506), which are all secreted via the type V secretion pathway (280)
(Table 3). EspC toxin acts within the cytosol of epithelial cells to
disrupt the architecture of the F-actin cytoskeleton (626–628). An
irreversible cell cycle arrest at the G2/M transition and sustained
inhibitory phosphorylation of the mitosis inducer CDK1 have
been found to be triggered by the tEPEC cycle-inhibiting factor
(Cif) (629), which belongs to the cyclomodulin family of bacterial
toxins and effector proteins (630).

(iii) EHEC. By forming dense and localized microcolonies at
the brush borders of fully differentiated T84 and Caco-2 cells,
EHEC induces the classical A/E brush border lesion (464, 492)
(Table 4). Like tEPEC, EHEC promotes the A/E histopathology
that results from the LEE pathogenicity island that encodes T3SS
and effector proteins homologous to those produced by tEPEC
(287, 631). Effacement of the brush border microvilli of intestinal
cells follows intimate adherence between the bacterium and the
epithelial cell membrane, accumulation of polymerized actin be-
neath the adhering bacteria, and effacement of microvilli, result-
ing in the bacteria being localized on a pedestal-like structure.
However, there is a significant divergence between the structures

of EHEC Tir effector proteins and those of tEPEC and also be-
tween the resultant pathogenic mechanisms utilized for EHEC-
induced host cell actin polymerization (287, 305, 631). E. coli
strains expressing Stxs but lacking the LEE have been shown to
adhere at the brush border of fully differentiated Caco-2 cells
(632), to induce F-actin cytoskeleton rearrangements, and to im-
pair epithelial barrier function and ion transport in fully differen-
tiated T84 cells (633) (Table 4).

Stxs are classical A1B5 toxins composed of two subunits: a pen-
tameric array of binding subunits and a single active subunit (634)
(Table 4). There are two main Stx families, Stx1 and Stx2. The Stx1
family consists of Stx1, Stx1c, and Stx1d, and the Stx2 group con-
sists of Stx2, Stx2c, Stx2c2, Stx2d, Stx2e, and Stx2f. EHEC adher-
ing at the apical surface of fully differentiated T84 cells induces
Src-dependent macropinocytosis that allows the delivered Stx1 to
penetrate and traffic within the cells (635–638) (Table 3). EHEC
expressing Stx1 causes galectin 3 depletion in fully differentiated
T84 cells by increasing the expression and secretion of apical
galectin 3, which in turn impairs trafficking and apical protein
mistargeting of several brush border structural proteins and trans-
porters, including villin, DPP IV, and NHE2 (639, 640). Stx causes
the inhibition of protein synthesis and apoptosis in fully differen-
tiated Caco-2 cells (Fig. 10) but not in T84 cells (641). Stx1 (642,
643) and Stx2 (643) both exhibit cytotoxic activity and apoptosis
in fully differentiated Caco-2 cells, since they induce p53/ATM-
dependent nuclear condensation, fragmentation of chromosomal
DNA, and cleavage of PARP (642).

(iv) EAEC. The cytotoxic effects of EAEC strains have been in-
vestigated mainly using polarized, fully differentiated colon can-
cer T84 cells. EAEC strain 042, which adheres to the brush borders
of cultured, fully differentiated human T84 and Caco-2 cells, pro-

FIG 10 Structural injuries and signs of cell death in fully differentiated Caco-
2/TC7 clone cells infected with a Shiga toxin-positive E. coli strain. (A) Trans-
mission electron microscopy micrograph of infected cells at an early time of
infection, showing the loss of brush border and the opening of the junctional
domain without a modification of the polarized organization of the cells form-
ing a monolayer. (B) Transmission electron microscopy micrograph of in-
fected cells at a late time of infection, showing the alteration of cell polariza-
tion, the disorganization of the apical domain, the detachment of cell debris,
the appearance of a large disjunction at the junctional domain, and the cell
detachment at the basal domain, indicating cell death.
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motes apical membrane damage characterized by the loss of mi-
crovilli and subnuclear vacuolization (507, 644, 645) (Table 4). It
is noteworthy that EAEC have been observed inside fully differen-
tiated T84 cells (644).

Exposure of fully differentiated T84 cell monolayers mounted
in Ussing flux chambers to purified enteroaggregative heat-stable
toxin 1 (EAST1) results in an increase in the short-circuit current,
a sensitive measure of net ion transport (646). The Pet toxin se-
creted by EAEC belongs to the SPATE family of toxins (306, 506).
Pet disrupts the architecture of the F-actin cytoskeleton of epithe-
lial cells by causing the cleavage of the actin-binding protein
fodrin (626–628) (Table 4). The Pic (protein involved in coloni-
zation) toxin is a second SPATE toxin produced by EAEC that
does not damage epithelial cells, cleave fodrin, or degrade host
defense proteins embedded in the mucus layer but which does
display mucinolytic activity, possibly enabling EAEC to penetrate
the intestinal mucus layer during EAEC colonization (626). The
cytotoxic effects of Pet and Pic have been investigated mainly us-
ing nonintestinal and nonpolarized epithelial Hep-2 cells. The cy-
totoxic effect of EAEC investigated in fully differentiated T84 cells
is clearly independent of Pet (645).

(v) Afa/Dr DAEC. Bernet-Camard et al. (647) were the first to
report that in fully differentiated Caco-2 cells infected with a wild-
type, F1845-positive Afa/DrDAF/CEACAMs DAEC strain, the recog-
nition of hDAF by the adhesin is followed by the disassembly of
the apical F-actin cytoskeleton, which in turn dramatically alters
the structural organization of the brush border (Fig. 9B and Table
4). When the bacteria come into contact with the brush border,
this results in the elongation of the microvilli and the formation of
tip microvillus vesicles that after detaching from the cells remain
attached to the infecting bacteria. At a late time postinfection, the
brush border of the infected cells disappears (Fig. 9B). The disap-
pearance of the brush border observed in Afa/DrDAF/CEACAMs

DAEC-infected fully differentiated Caco-2 cells at a late time
postinfection resembles the disappearance of the brush border
observed in tEPEC-, aEPEC-, or EHEC-infected fully differenti-
ated Caco-2 cells. However, the Afa/DrDAF/CEACAMs DAEC-in-
duced disappearance of the brush border results from mecha-
nisms that differ from those of tEPEC, aEPEC, and EHEC, since
Afa/DrDAF/CEACAMs DEAC strains do not express LEE leading to
the A/E lesion of microvilli. Afa/DrDAF/CEACAMs DAEC expressing
Dr-II adhesin promotes apical cytoskeleton rearrangements and,
as the result of the presence of a functional hemolysin, promotes
cell apoptosis and cell lysis in fully differentiated Caco-2 cells
(648). Accompanying the Dr or F1845 adhesin-induced apical
F-actin cytoskeleton disassembly in fully differentiated Caco-2
cells, the distribution of brush border-associated functional pro-
teins SI, DPP IV, glucose transporter SGLT1, and fructose trans-
porter GLUT5 is dramatically altered (649), and as a consequence,
brush border sucrase and DPP IV enzyme activities are abolished
(650) (Fig. 9B and Table 3). In parallel, the fully differentiated
Caco-2 cells infected with Afa/DrDAF/CEACAMs DAEC expressing
Dr or F1845 adhesin display a blockade of the biosynthesis of SI
and DPP IV without mRNA levels or enzyme stability being af-
fected (650). Interestingly, when the cells are infected with recom-
binant E. coli strains expressing the Dr or F1845 adhesin, no de-
crease in sucrase or DPP IV enzyme activities and no inhibition of
enzyme biosynthesis are observed, indicating that a pathogenic
factor(s) other than the Afa/DrDAF/CEACAMs adhesins operates in
Afa/DrDAF/CEACAMs DAEC.

Structural and Functional Injuries at the Junctional Domain

TJs are positioned most apically in the junctional domain of epi-
thelial cells. TJs regulated in response to physiological and immu-
nological stimuli are the primary cellular determinant of intestinal
epithelial barrier function (23, 651, 652). TJs are also involved in
mucosal immune responses (23, 651, 652). TJ organization results
from the interaction of transmembrane proteins, including the
structural ZO proteins linked to the actin filament cytoskeleton,
the structural/functional occludin, and the functional claudins
(23, 651, 652). TJs are a highly regulated cell area in which the
Ca2�-calmodulin-dependent serine-threonine protein kinases
myosin light chain kinase (MLCK) and PKC-� play an essential
role for the functional regulation (23, 651, 652). Some enteroviru-
lent bacteria have developed sophisticated strategies for structur-
ally and functionally altering the TJs by delocalizing ZO proteins,
occludin, and claudins but also other cell membrane-anchored
proteins such as aquaporins (23, 309, 653). Some recent studies
have shown that an increase in paracellular permeability can occur
both with and without changes to TER. Disruption of the struc-
ture and functions of TJs by enterovirulent bacterial effectors and
toxins that lead to deregulation of the paracellular passage of sol-
utes is one of the causes of diarrheal disease (653) (Table 5). More-
over, enterovirulent bacteria, which are unable to cross the cell
membrane at the brush border but are able to enter through the
basal membrane, have acquired the capacity to open the TJs by
means of their translocated effectors or secreted toxins and thus to
penetrate into the intestinal polarized epithelial cells through the
junctional domain.

Shigella. S. flexneri serotype 2a adhering apically onto fully
differentiated T84 cells secretes bacterial products that have the
ability to alter the TJs by inducing the delocalization of ZO-1,
occludin, and claudin-1 from membrane lipid rafts and the de-
phosphorylation of occludin (654). In fully differentiated Caco-2
cells cocultured with enteric glial cells, which function as impor-
tant regulators of intestinal epithelial barrier functions, and in ex
vivo cultured human colonic mucosa, Flamant et al. (655) ob-
served a reduced deleterious effect of S. flexneri on the TJs, indi-
cating that the enteric glial cells have a protective effect against the
lesions at the intestinal barrier caused by an invasive pathogen.

Listeria. LLO induces a loss of TER and an increase in transep-
ithelial flux in fully differentiated HT-29/B6 cells (552).

C. jejuni. C. jejuni causes no changes in short-circuit currents
when fully differentiated Caco-2 cell monolayers mounted in
Ussing chambers are infected, but dome formation, a marker of
fluid transport across the monolayer, is reduced, and this is ac-
companied by a decrease in TER correlating with a change in the
distribution of the TJ-associated occludin (656) (Table 5). Apical
infection of fully differentiated T84 monolayers causes a decrease
in TER accompanied by the redistribution of the TJ-associated
occludin from an intercellular to an intracellular location (657).
When infecting the basolateral domain, C. jejuni causes a more
rapid decrease in TER but a comparable redistribution of TJ pro-
teins (657). Internalization of C. jejuni into fully differentiated
T84 cells through a phosphoinositide 3-kinase (PI3K)-dependent
mechanism is accompanied by a reduction of TER (658).

Salmonella spp. Fully differentiated Caco-2 cells grown on per-
meable filters and infected apically with either S. Choleraesuis or
S. Typhimurium show a loss of TER (377) (Table 5). S. Typhimu-
rium delocalizes the TJ-associated ZO-1 and occludin proteins in
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TABLE 5 Overview of structural and functional injuries at the junctional domains of fully differentiated human colon cancer cell lines

Pathogen Cell line Virulence factor Effect Reference(s)

Shigella T84 Undetermined Loss of ZO-1, occludin, and claudin-1 from membrane lipid
rafts and dephosphorylation of occludin

654

Listeria HT-29/B6 LLO Loss of TER 552
Campylobacter Caco-2 Undetermined Reduction of dome formation, loss of TER, and alteration of

occludin distribution
656

T84 Undetermined Loss of TER and alteration of TJ-associated protein
distribution

657

Salmonella Caco-2 Undetermined Loss of TER 377
Caco-2/TC7 SopB, SopE, SopE2, SipA Rho GTPase-dependent disruption of TJs and delocalization

of ZO-1 and occludin
659

Vibrio cholerae T84 Undetermined Loss of TER 668.
T84 RTX toxin Loss of TER 671
T84 Cholera toxin Increase of Isc, activates Cl�/HCO3

� transport 667
T84 Protease PrtV and

hemolytic exotoxin VCC
Increase in paracellular permeability 760

Caco-2 ZOT Increase in paracellular permeability 662
Caco-2 ZOT Delocalization of occludin and ZO-1 and loss of TER 663
Caco-2 ZOT Activation of PAR2 for disassembly of TJ proteins 664

EIEC HT-29.cl19A, Caco-2,
T84

Undetermined Loss of TER, rearrangements of ZO-1 and occludin, and
phosphorylation of occludin

672

T84 Undetermined Loss of TER, increase of paracellular flux, and redistribution
of ZO-1 protein

455

tEPEC Caco-2 Undetermined Loss of TER 674-676
T84 Undetermined Activation of myosin light chain kinase (MLC20) for loss of

TER
679

T84 Tir Role in loss of TER 680, 681
Caco-2 EspG, Orf3 EspG alone in cells is without an effect on TER, whereas

EspG together with Orf3 decreases TER
691

T84 EspF 682
Caco-2 Undetermined Rearrangements of ZO-1, occludin, and claudin-1 proteins

accompanying loss in TER; loss of fence function
688

Caco-2 NleA Loss of TER results of rearrangement in distribution of TJ-
associated ZO-1 and occludin and the delocalization of
occludin but not claudin-1 and -3 from lipid rafts

686, 687

Caco-2 EspF, Map TJ disruption through inhibition of COPII-dependent host
cell protein trafficking

684, 685

Caco-2 EspG, EspG2 Disruption of TJs and increase the paracellular movement of
molecules

690

T84 Undertermined Activation of the cysteine protease calpain leads to a loss of
TER and a rapid cell loss and necrosis, a phenomenon
increased in the absence of Tir

683

Caco-2 EspG, Orf3 Alteration of TJ fence function delocalizing basolateral
proteins, including �1-integrin and Na�/K� ATPase to
the apical membrane

691

Caco-2, T84 EspG (EspG-� and EspG-�)
and EspG1 and -2

Microtubule disruption and loss of TER 692, 693

EHEC T84 Undetermined Loss of TER, increase of fluid transepithelial passage,
reduced expression of TJ ZO-1, occludin, and claudin-2
but not claudin-1 or claudin-4

697, 698

EAEC T84 Loss of TER, delocalization of TJ claudin-1 and occludin 699
Afa/DrDAF/CEACAMs

DAEC
Caco-2/TC7 F1845 adhesin independent Increase of paracellular permeability without loss of TER

and with ZO-1 and occludin delocalization
700

Caco-2/TC7 Sat Rearrangements of TJ ZO-1, ZO-3, and occludin but not of
claudin-1, changes in distribution of ZO-1, ZO-3, and
occludin within lipid rafts, increase of formation of fluid
domes without affecting TER

701
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fully differentiated Caco-2/TC7 clone cells (659). SopB, SopE,
SopE2, and SipA are the T3SS-1-secreted effectors responsible for
the S. Typhimurium-induced disruption of TJ structure and func-
tion by stimulating host cell Rho family GTPases (659).

V. cholerae. The characterization of the epithelial cell receptor
for Zot conducted in fully differentiated Caco-2 cells has revealed
a 66-kDa membrane receptor protein localized at the intercellular
contacts and that Zot binding to its receptor requires a sequence
that spans between amino acids (aa) 118 and 299 (660, 661). Con-
sistent with the localization of the Zot receptor at the cellular
junction, the 12-kDa fragment of Zot, deltaG, enhanced the para-
cellular permeability in fully differentiated Caco-2 cell monolay-
ers (662). Consistent with this, the Zot C-terminal domain causes
the delocalization of occludin and ZO-1 from the TJs of fully dif-
ferentiated Caco-2 cell monolayers, without causing F-actin reor-
ganization or any change in TER (663) (Table 5). Moreover, the
active Zot domain (aa 288 to 293) increases ZO-1 and myosin 1C
serine/threonine phosphorylation, altering interaction between
ZO-1 and its binding partners, which in turn induces TJ disassem-
bly through PAR2 activation (664). It was noted that zonulin, a
eukaryotic protein structurally similar to Zot (404), induced TJ
disassembly, resulting in the delocalization of the TJ-associated
ZO-1 protein in fully differentiated Caco-2 cells (665). It is note-
worthy that opening of the TJs by Zot is a new approach tested for
the safe delivery of therapeutic agents (666). By using Ace, V.
cholerae stimulates a rapid increase in Isc and the activation of
Cl�/HCO3

� transport in fully differentiated T84 cells as the result
of changes in intracellular Ca2�, but this is not associated with any
increase in intracellular cyclic nucleotides (667). Decreased TER
has been also observed in fully differentiated T84 cells as a result of
V. cholerae protease activity (668) (Table 5). RTX toxin (669),
which is produced by El Tor and O139 strains but not by classical
strains and which depolymerizes cellular actin (670), causes a loss
of TER in fully differentiated T84 cells when added to either the
apical or basolateral surfaces (671).

Enterovirulent E. coli. (i) EIEC. EIEC infection in fully differ-
entiated HT-29.cl19A, Caco-2, and T84 cells is followed by a fall in
TER resistance, accompanied by rearrangements of TJ-associated
ZO-1 and occludin, phosphorylation of occludin, and an increase
in chloride secretion (672).

(ii) AIEC. Apical infection of fully differentiated T84 cell mono-
layers with the AIEC strain LF82 leads to a reduction in TER and
increased paracellular flux accompanied by the redistribution of
the TJ-associated ZO-1 protein (455) (Table 3). Interestingly, ba-
solateral infection results in a more severe disruption of the epi-
thelial barrier function (455). Infection of CEABAC10 transgenic
mice expressing hCEACAMs with AIEC strain LF82, but not with
nonpathogenic E. coli, leads to an increase in intestinal permeabil-
ity and to the disruption of mucosal integrity in a type 1 pilus-depen-
dent mechanism (673). The mechanism of the LF82-induced altera-
tion in intestinal epithelial barrier remains to be investigated with the
appropriate models of fully differentiated Caco-2 or T84 cell mono-
layers.

(iii) EPEC. tEPEC causes a decrease in TER of monolayers of
fully differentiated Caco-2 and T84 cells (674–676) without affect-
ing desmosomes (677) (Table 5). tEPEC infection of fully differ-
entiated Caco-2 cells results in a decrease in the cell resting mem-
brane potential (678). Activation of MLCK20 results in TER
alteration in fully differentiated T84 cells infected with tEPEC
(679). Intimate attachment of tEPEC involving the binding of

intimin to Tir is necessary for alteration to occur at the TJs in fully
differentiated Caco-2 and T84 cells (680, 681). In fully differenti-
ated T84 cell monolayers, tEPEC-induced structural alterations in
TJs, rearrangements in TJ-associated ZO-1, occludin, and clau-
din-1 proteins, and loss of TER all occur as a result the action of
the T3SS translocated EspF effector (682). Intimate attachment of
tEPEC to fully differentiated T84 cells disrupts the fence function
of TJs and delocalizes basolateral proteins such as �1 integrin and
Na�/K� ATPase to the apical membrane (683). Intimate tEPEC
attachment and the T3SS-translocated effectors EspF and Map are
required for tEPEC to disrupt TJ integrity in fully differentiated
Caco-2 cells and thus to increase the paracellular movement of
molecules (684, 685). The T3SS-translocated effector protein
NleA is involved in TJ disruption during tEPEC infection of fully
differentiated Caco-2 cells as a result of the inhibition of COPII-
dependent host cell protein trafficking (686, 687). In fully differ-
entiated Caco-2 cells, infection by tEPEC induces a decrease of
TER, a rearrangement in the distribution of TJ-associated ZO-1
and occludin, and the delocalization of occludin and flottilin-1
but not of claudin-1 and -3 from lipid rafts, thus allowing bacteria
to penetrate the infected cells (688). tEPEC OMPs in fully differ-
entiated Caco-2 cells monolayers induce changes in adherens
junctions, leading to the dissociation of the cadherin/�-catenin
complex and the cytoplasmic redistribution of �-catenins
through the activation of PKC-� signaling (689). In fully differ-
entiated Caco-2 cells, EspG and EspG2, through their activation of
the host cysteine protease calpain, lead to a loss of TER and a rapid
cell loss and necrosis, a phenomenon that is increased in the ab-
sence of Tir (690). The EspG effector and its homologue Orf3 are
both involved in microtubule disruption in fully differentiated
Caco-2 cells, but EspG alone has no effect on TER, whereas EspG
combined with Orf3 decreases TER (691). tEPEC expresses two
different types of EspG (EspG� and EspG�) and EspG2, and these
are responsible for microtubule disruption in fully differentiated
Caco-2 cells (692), and EspG1 and its homologue EspG2 contrib-
utes to loss of barrier function via an undefined mechanism that
may be linked to the disruption of the microtubule network (693).
TJ organization in fully differentiated T84 cells is not affected by
the tEPEC T3SS effector NleE activating Erk1/2 MAPK and
NF-�B (694). The tEPEC EspF-induced increase in paracellular
permeability and ZO-1 delocalization in fully differentiated
Caco-2 cells does not relate to the tEPEC EspF-induced caspase 3,
8, and 9 cleavage (695, 696).

(iv) EHEC. EHEC in fully differentiated T84 cell monolayers
decreases TER and increases the transepithelial passage of fluid by
inducing reduced expression of TJ-associated ZO-1, occludin,
and claudin-2, but not of claudin-1 or claudin-4 (697, 698), and
without affecting desmosomes (677) (Table 5). In contrast to
tEPEC, the EspF of which reduces TER, the EspF of EHEC does
not have this effect on fully differentiated Caco-2 cell monolayers
(685).

(v) EAEC. EAEC infecting fully differentiated T84 cell mono-
layers induces an AAF/II-dependent decrease in TER and the de-
localization of the TJ-associated claudin-1 and, to a lesser degree,
occludin (699) (Table 5).

(vi) Afa/Dr DAEC. Infection of fully differentiated Caco-2/TC7
cell monolayers by Afa/DrDAF/CEACAMs DAEC expressing F1845
adhesin is followed by an increase in the paracellular permeability
without any decrease in TER (700) (Table 5). The distribution of
TJ-associated occludin and ZO-1 proteins is markedly altered,
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whereas that of the zonula adherens-associated E-cadherin is
not modified. These TJ lesions are independent of the recogni-
tion of hDAF by the F1845 adhesin, indicating that another
Afa/DrDAF/CEACAMs DAEC pathogenic factor is operant.
Guignot et al. (701) have identified the secreted autotrans-
porter toxin Sat, belonging to the subfamily of SPATE toxins
(306, 506), as the virulence factor of Afa/DrDAF/CEACAMs DAEC
that promotes the TJ injuries in fully differentiated Caco-2/TC7
cell monolayers. Interestingly, these authors indicate that the sat
gene is generally absent in Afa/DrDAF/CEACAMs DAEC strains col-
lected from the stools of children without diarrhea (16% positive)
and is present in about half of the Afa/DrDAF/CEACAMs DAEC
strains collected from the stools of children with diarrhea.

Host Cellular Defense Responses

After recognition by PAMPs, PRRs rapidly trigger an array of an-
timicrobial immune responses through the induction of various
inflammatory cytokines, chemokines, and type I interferon (IFN)
(5, 6). In addition, opening of the TJs, coupled with the induced
proinflammatory cell responses, leads to the paracellular passage
of activated immune cells, including PMNLs and dendritic cells
(DCs), from the lamina propria into the luminal compartment
(165, 166, 179, 702).

Yersinia. Upregulation of proinflammatory cytokine IL-8 and
monocyte chemotactic protein 1 (MCP-1), granulocyte-macro-
phage colony-stimulating factor (GM-CSF), and TNF-� genes
and cytokine secretion have been reported in monolayers of con-
fluent, undifferentiated Caco-2 cells which have been invaded by
Y. enterocolitica (703) (Table 6). IL-8 is secreted by fully differen-
tiated T84 cells in response to invasion by Y. enterocolitica via a
mechanism dependent on YopB and YopD (704). Yersinia-in-
duced IL-8 secretion has been investigated as a function of cell
differentiation in T84 cells (314). IL-8 secretion occurs when Y.
enterocolitica penetrates undifferentiated cells or fully differenti-
ated cells via the basolateral domain by an inv-dependent mecha-
nism. In contrast, when the apical domain of fully differentiated
cells is infected, there is no IL-8 secretion and no invasion occurs.
Infection of Caco-2 and T84 cells with Y. enterocolitica resulted in
the activation of I-�B kinase alpha (IKK�) and IKK� and in-
creased NF-�B DNA binding activity (705).

In fully differentiated T84 cells, �1 integrin is strictly polarized
to the basolateral membrane, and the transient microdiscontinu-
ities resulting from the paracellular migration of PMNLs, mim-
icking an inflammatory situation, allows access to �1 integrin
from the apical side of cultured cells (706). Y. pseudotuberculosis
has been observed at sites where small discontinuities resulting
from neutrophil transmigration are found (706). These observa-
tions indicate that the transient perturbations of monolayer con-
tinuity observed after the transepithelial migration of enteroviru-
lent pathogen-induced PMNLs or inflammatory bowel diseases
may be associated with a window of risk, during which enteroin-
vasive pathogens can gain access to the basolateral ligands neces-
sary for unwanted cell entry.

Shigella. Upregulation of inducible nitric oxide synthase
(iNOS) mRNA and nitric oxide (NO) production have been ob-
served in undifferentiated Caco-2 cells infected with S. flexneri
(707) (Table 6). Undifferentiated Caco-2 cells microinjected with
S. flexneri bacterium-free supernatant or purified LPS lead to the
translocation of NF-�B into the nucleus (708). In fully differenti-
ated T84 cells, infection with S. dysenteriae results in the upregu-

lation of proinflammatory cytokines IL-8, MCP-1, GM-CSF, and
TNF-� (703). Like the T3SS-associated OspF, OspG, and IpaH
effectors of S. flexneri that downregulate the host innate immune
response, the OspB effector functions as a negative regulator, and
in fully differentiated T84 cell it downregulates the Shigella-in-
duced IL-8 secretion (709). Transcriptome analysis of undifferen-
tiated Caco-2 cells infected by S. flexneri 5a has been conducted
and compared to those of Caco-2 cells infected with a noninvasive
Shigella mutant and of cells treated with TNF-� (710). The inva-
sive and noninvasive strains both enhance the transcription of a
common pattern of 240 genes, whereas in contrast, these genes are
not induced by TNF-� treatment. Interestingly, induction of early
genes and late genes has been observed, and among the set of 18
activated genes that mainly encode proinflammatory molecules,
the invasive strain induces a dramatic increase in IL-8 gene tran-
scription. S. flexneri infection of fully differentiated HT-29 Glc�

cells induces increased production of TNF-� mRNA, whereas no
such increase developed in fully differentiated, mucin-secreting
HT29-MTX cells, suggesting that mucus has a protective effect
against the proinflammatory effect of S. flexneri (64). Nod1, which
acts as a critical sensor of bacterial peptidoglycan fragments and in
turn induces host cell innate immune responses (711), localizes at
sites of S. flexneri entry in the plasma membrane of epithelial cells
and is basolaterally localized in fully differentiated Caco-2/TC7
cells transfected with Nod1-HA (712).

Shigella attachment to the basolateral domain of fully differen-
tiated T84 cells, triggering the transepithelial PMNL migration,
has been found to be dependent on the presence of a Shigella
220-kb virulence plasmid (713). The T3SS-associated effectors
OspC1, OspF, and OspZ play a role in the upstream induction of
host signaling pathways, including the extracellular signal-regu-
lated kinases 1 and 2 (Erk1/2), MAPKs required for PMNL trans-
epithelial migration in Shigella-infected fully differentiated T84
cells (714, 715). In addition, S. flexneri LPS (716) and Shigella
enterotoxin 2 (717) play a role in mediating IL-8 secretion and
epithelium-derived signaling, which leads to the directed migra-
tion of PMLNs across the fully differentiated T84 cell monolayer.

In fully differentiated, mucin-secreting HT29-MTX cells, S.
dysenteriae induces a cell response in which cross talk between
IL-1� and Akt activated by the produced trefoil factor family pep-
tide TFF3 inhibits the adherence of the pathogen and its invasion
of cells (718).

Listeria. Upregulation of IL-8, MCP-1, GM-CSF, and TNF-�
genes has been observed in fully differentiated T84 infection with
L. monocytogenes (703) (Table 6). IFN-	 and IL-6 cause the over-
expression of inducible nitric oxide synthase, thus reducing the
intracellular growth of L. monocytogenes phagocytosed from the
apical pole of fully differentiated Caco-2 cells (719). In addition,
IL-6, but not IFN-	, causes a partial restriction of L. monocyto-
genes in phagosomes and diminishes the number of bacteria
residing within the cell cytoplasm. The role of intestinal P gly-
coprotein in host defenses against L. monocytogenes has been
investigated using fully differentiated Caco-2 cells and a P-
glycoprotein-overexpressing subclone, Caco-2/MDR (720).
Overexpression of P glycoprotein in Caco-2/MDR cells leads to
increased resistance to L. monocytogenes invasion, whereas P-
glycoprotein inhibition leads to increased invasion. Several
physiological and pathological processes, including host im-
mune responses, are controlled by a family of very small, non-
coding RNAs known as microRNAs that antagonize a number
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TABLE 6 Overview of cellular responses in fully differentiated human colon cancer cell lines

Pathogen Cell line Virulence factor Cell response Reference(s)

Yersinia Caco-2 Undetermined Increase of IL-8, MCP-1, GM-CSF, and TNF-� mRNAs and secretion 703
T84 YopB, YopD IL-8 production 704
T84 Undetermined Differentiation-dependent basolateral IL-8 secretion 314
T84 Undetermined NF-�B activation 705

Shigella Caco-2 Undetermined Increase of IL-8, MCP-1, GM-CSF, and TNF-� mRNAs and secretion 703
HT-29 Glc� Undetermined TNF-� mRNA increase 64
Caco-2 Undetermined Activation of genes encoding proinflammatory molecules 710
HT29-MTX Undetermined IL-1�- and Akt-dependent activation of trefoil factor family peptide TFF3 718
T84 OspF, OspC1 Erk1/2-dependent PMNL transepithelial migration 715
T84 OspZ Erk1/2-dependent PMNL transepithelial migration 714
T84 OspB, OspF Downregulation of MAPK activation, PLMN transepithelial migration,

and IL-8 secretion
709

Caco-2/TC7 Undetermined Basolateral localization of Nod1 at the bacterial entry site 712

Listeria Caco-2 Undetermined Increase of IL-8, MCP-1, GM-CSF, and TNF-� mRNAs and secretion 703
Caco-2 Undetermined IFN-	 and IL-6 production 719
HT29-MTX LLO Stimulation of mucus exocytosis, upregulation of genes coding for

secreted and membrane-bound mucins
62, 63, 79,

80
Caco-2 LLO Alteration of miR-146b, miR-16, let-7a1, miR-145, and miR-155

microRNAs
721

Campylobacter Caco-2 Undetermined Activation of Erk1/2, p38, and JNK 657, 722
Caco-2 Undetermined Activation of NF-�B and AP-1 657
Caco-2 and T84 Undetermined IL-8 production 657, 723
T84 OMVs Lipid raft-dependent IL-8 production 724
T84 Flagella Activation of NF-�B and TLR5 725
T84 Flagella and CDT TLR4-dependent NF-�B signaling controlling secretion of IL-8 and

TNF-�
726

Caco-2 and T84 LOS Production of CXCL10 348
T84 Undetermined CDT-independent induction of oncosis 728
Caco-2 Undetermined Increased hBD-2 and hBD-3 gene expression 723, 729

Salmonella Caco-2 Undetermined Activation of Erk1/2 and JNK 730
Caco-2 and T84 Undetermined Activation of NF-�B 705
Caco-2 Undetermined Increase of IL-8, MCP-1, GM-CSF, TNF-�, CXCL1 (GRO-�), CXCL3

(GRO-	), and RANTES mRNAs
703, 732

T84 Undetermined PI3K/Akt pathway reduces Erk1/2 activation and IL-8 production 733
Caco-2 and T84 Undetermined Upregulation of iNOS and COX-2 regulating chloride secretion 672
Caco-2 Flagellin Induction of I-�B� degradation, NF-�B nuclear translocation, and iNOS 736
T84 SopE2 and flagellin Cooperation for activation of MAPKs and IL-8 production 737
T84 TviA regulator By reducing flagellin secretion in turn reduces IL-8 production 738
T84 Undetermined PMNL transepithelial migration 739, 740,

742
T84 Chemotactic factor PMNL transepithelial migration 739, 741
T84 IL-8, hepoxilin A3 (HXA3) Cooperation for PMNL epithelial transmigration 741, 743,

744
T84 SipA Activation of ezrin regulating apical transporters NHE-3, CFTR, and

MRP2, in turn increasing apical expression of MRP2 controlling HXA3
release for PMNL transepithelial migration

743

T84 SipA Induces PKC-�-dependent PMNL transepithelial migration 747
HT29-MTX Undetermined Secretion-dependent production of mucus preventing infection 748, 749
Caco-2 Flagella Increase of hBD-2 expression 750-753

Vibrio cholerae T84 Undetermined IL-8 secretion 756
T84 Flagellin MAPK- and NF-�B-dependent IL-8 production involving TLR5 758
T84 Undetermined Increase of upregulation of IL-1�, IL-1�, TNF-�, IL-8, and MCP-1

mRNAs
759

T84 Protease PrtV and
hemolytic exotoxin
VCC

Production of IL-8 and TNF-� 760

Caco-2 Hemolytic exotoxin VCC Induction of autophagy 761

ETEC Caco-2 LT Stimulation of cAMP adenylate cyclase in fully differentiated Caco-2 cells 568–572
T84 ST Stimulation of cGMP adenylate cyclase 575–577

EIEC Caco-2, T84 Undetermined Activation of NF-�B 705

(Continued on following page)
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of target mRNAs. Whether Listeria monocytogenes or listerioly-
sin O (LLO) alters the expression of microRNAs has been in-
vestigated using Caco-2 cells (721). Five microRNAs (miR-
146b, miR-16, let-7a1, miR-145, and miR-155) are significantly

deregulated following L. monocytogenes infection. Interestingly,
during infection with wild-type bacteria or LLO-deficient bacteria
or after treatment with purified LLO, miR-155, which plays an
important role in inflammatory responses, is induced. Moreover,

TABLE 6 (Continued)

Pathogen Cell line Virulence factor Cell response Reference(s)

AIEC T84 Flagella fimA-dependent basolateral IL-8 secretion 454
Caco-2BBe, T84 Secretion of IL-8 and CCL20 449
Caco-2BBe, T84 Transepithelial migration of DCs and PMNLs 449
Caco-2BBe Undetermined Suppression of STAT1 signal transduction 767
Caco-2 Undetermined Expression of Nod1 protein 768

tEPEC T84 Undetermined NF-�B-dependent IL-8 production 769
Caco-2 NleE Erk1/2- and NF-�B-dependent PMNL transepithelial migration 694, 714
T84 Flagellin FliC Erk1/2-, p38-, and JNK-dependent IL-8 secretion 770, 771
T84 Undetermined MAPK- and NF-�B-dependent activation of IL-8, MCP-1, MIP-3�, and

hBD-2 genes
772

Caco-2, T84 Undetermined 773, 774
Caco-2 BFP, flagella, EspA, EspC NF-�B- and PKC-
-dependent IL-8 production 776
Caco-2, T84 T3SS effectors IL-8 and CCL20 production 771, 772
Caco-2 NleE, NleH1, NleC Suppressed MAPK- and NF-�B dependent IL-8 production 777
Caco-2 Undetermined Inhibition of NF-�B leads to inhibition of iNOS expression 778
Caco-2 OMPs MAPK- and NF-�B-dependent upregulation of iNOS 779
Caco-2 EspF Activation of caspases 3, 8, and 9 cleavage 695, 696

aEPEC Caco-2 Flagella Early but not late IL-8 production in fully differentiated Caco-2 cells 488, 782
HT29-MTX Undetermined Mucus hypersecretion (whereas not for tEPEC) 783

EHEC Caco-2 Undetermined Erk1/2-, p38-, NF-�B, and AP-1-dependent increase of mRNA expression
and IL-8 production

784, 785

Caco-2 Flagellin MAPK and NF-�B activation for IL-8 secretion 784, 786
Caco-2 Stx1, Stx2 Increase of IL-8 mRNA 793
T84 HCP Erk1/2-, p38-, and JNK-dependent IL-8 and TNF-� but not IL-2, IL-6, or

IL-10 production
787

Caco-2, T84 Stx1 Downregulation of IFN-	-induced iNOS mRNA expression and NO
production heme oxygenase-1

208, 788,
791

Caco-2 OmpA IL-1, IL-10, and IL-12 production and DC transepithelial migration 789
T84 Stx Inhibition of PI3K/Akt-, NF-�B-dependent CCL20 and IL-8 gene

transcription and chemokine production
792

EAEC Caco-2 Flagellin p38- and TLR5-dependent IL-8 production 794, 796,
797

T84 AAF Upregulation of genes encoding IL-8, IL-6, TNF-�, CXCL1, CXCL3,
ICAM-), GM-CSF, and IL-1�

799

T84 Undetermined PMNL transepithelial migration involving 12/15-LOX pathway and
arachidonic acid-derived lipid PMNL chemoattractant

800

T84 Undetermined Signs of cell death 507

Afa/DrDAF/CEACAMs

DAEC
Caco-2 Dr, F1845 Recognition of brush border hDAF leads to Erk1/2-, p38-, and JNK-

dependent basal production of IL-8 and PMNL transepithelial
migration

807
Caco-2/TC7 Dr, F1845

T84 Flagella or not PMNL transepithelial migration leads to synthesis of TNF-� and IL-1�, in
turn promoting hDAF upregulation at brush border increasing
bacterial adhesion, and abnormal hDAF basolateral expression

808

Caco-2, T84 Flagella TLR5-dependent IL-8 production 801, 802,
803

Caco-2/TC7 Dr hDAF- and Erk1/2-dependent IL-8 production through Dr adhesin
released by norepinephrine affecting the induction of gene draC
encoding the usher

804, 805

T84 F1845 Induction of hypoxia-induced factor 1� (HIF-1�) for production of IL-8
and VEGF

821

Caco-2 Afa-III Upregulation of the inflammation-associated molecule MICA mediated
by interaction with hDAF

818

Caco-2 Dr, F1845 Antibacterial cell response leads to destruction of adhering bacteria at the
brush border

54

T84 F1845 Production of bioactive VEGF through hDAF recognition and subsequent
Src protein kinase activation upstream of the activation of the Erk1/2
and Akt signaling pathways

820

aDAEC T84 Undetermined Production of IL-8 806
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miR-155 is downregulated following infection with an internalin
mutant.

L. monocytogenes stimulates mucus exocytosis in fully differen-
tiated mucin-secreting HT29-MTX cells through the action of
LLO (79, 80). The MUC3, MUC4, and MUC12 genes, which en-
code membrane-bound mucins, are upregulated in LLO-stimu-
lated HT29-MTX cells, and the secretion of the gel-forming
MUC5AC mucin develops without upregulation of the MUC5AC
gene (62). Increased expression of membrane-bound MCU4 and
MUC12 at the brush border results in inhibition of the cell entry of
L. monocytogenes into the HT29-MTX cells (63).

C. jejuni. Infection of fully differentiated Caco-2 cell monolay-
ers or human colonic explants results from an increase in proin-
flammatory MAPKs Erk1/2, p38, and c-Jun N-terminal kinase
(JNK) (722) (Table 6). Apical infection of fully differentiated T84
cells with C. jejuni causes activation of the transcription of the
transcription factors NF-�B and AP-1, the phosphorylation of the
Erk1/2, p38, and JNK MAPKs, and the basolateral secretion of
IL-8 (657). It has been noted that basolateral infection with C.
jejuni causes greater secretion of IL-8 than apical infection (657).
In fully differentiated Caco-2 and T84 cells, C. jejuni induces
strong IL-8 secretion (723). C. jejuni-produced OMVs containing
a large set of bacterial proteins, including CDT, exert a cytotoxic
activity and induce lipid raft-dependent IL-8 production in fully
differentiated T84 cells (724). Infection of fully differentiated T84
cells with C. jejuni upregulated DCs and T-cell chemokine gene
transcription and secretion through the activation of NF-�B sig-
naling, but this is independent of TLR5 activation by flagellin
(725). C. jejuni, by use of its flagellum and cytolethal distending
toxin, increases the secretion of both IL-8 and TNF-� via TLR4-
dependent NF-�B signaling (726). C. jejuni isolates expressing
ganglioside-like LOS increase the secretion of the T-cell attractant
CXCL10 in fully differentiated Caco-2 and T84 cells (348). C.
jejuni infection in fully differentiated T84 cell monolayers disrupts
epithelial TLR9 signaling, thus exerting a protective effect (727).
Fully differentiated T84 cells when invaded by C. jejuni display
oncosis that is independent of cytolethal distending toxin activity
(728).

In undifferentiated Caco-2 cells, C. jejuni increases hBD-2 and
hBD-3 gene expression without modifying the expression of the
hBD-1 gene (723, 729). This is a host cell defense response, since
the recombinant human �-defensins hBD-2 and hBD-3 exhibit
bactericidal activity against C. jejuni that is characterized by bac-
terial cell membrane damage in the case of hBD-3 (729).

Salmonella spp. S. Typhimurium induces the activation of the
proinflammatory signaling Erk1/2 and JNK in fully differentiated
Caco-2 cells (730) (Table 6). The upregulated transcription and
expression of downstream targets genes of NF-�B, which are not
necessary for the cell entry of S. enterica serovar Dublin and S.
Typhimurium (731), are key components in the inflammatory
response to S. Dublin infecting undifferentiated Caco-2 cells and
fully differentiated T84 cells (705). S. Dublin infection of undif-
ferentiated Caco-2 cells results in the upregulation of proinflam-
matory IL-8, MCP-1, GM-CSF, TNF-�, CXCL1 (GRO-�),
CXCL3 (GRO-	), and RANTES (regulated and normal T-cell ex-
pressed and secreted) genes (703, 732). Salmonella activates the
PI3K/Akt pathway in fully differentiated T84 cells, resulting in
altered activation of Erk1/2, which in turn attenuates IL-8 produc-
tion (733). The fully differentiated cell line T84 infected with S.
Typhimurium secretes IL-6, a proinflammatory cytokine involved

in neutrophil degranulation and lymphocyte differentiation
(734). S. Typhimurium-induced IL-6 production in undifferenti-
ated Caco-2 cells develops via the Erk1/2 and NF-�B signaling
pathways but not via the p38 MAPK, JNK, or PI3K/Akt signaling
pathway (735). The upregulation of iNOS and cyclooxygenase 2
(COX-2) by S. Dublin in fully differentiated Caco-2 and T84 cells
can in turn modulate chloride secretion and barrier function in
intestinal epithelial cells (672). Flagellin, the primary component
of bacterial flagella, is a potent activator of TLR5 signaling local-
ized at the basal domain of enterocytes and is a major proinflam-
matory determinant of Salmonella. The flagellum of S. Dublin
induces I-�B� degradation, the nuclear translocation of NF-�B,
and an increase of iNOS (736). SopE2, a Salmonella guanine nu-
cleotide exchange factor, cooperates with flagellin to activate
MAPK and IL-8 production (737). S. enterica serovar Typhi,
which does not elicit neutrophil infiltrates in the human intestinal
mucosa, expresses the B locus which is involved in reducing IL-8
production in fully differentiated T84 cells, because the TviA reg-
ulatory protein reduces flagellin secretion and, in turn, reduces
IL-8 production (738).

McCormick et al. (739) were the first to report that after S.
Typhimurium apical infection of a fully differentiated T84 cell
monolayer, PMNLs subsequently placed on the basolateral do-
main of the monolayers start transepithelial migration without
compromising the monolayer integrity as assessed by TER and
measurements of ion transport. Investigation of the potentials of
various Salmonella serovars, including S. Typhimurium, S. Enter-
itidis, S. Typhi, S. enterica serovar Paratyphi, S. enterica serovar
Pullorum, and S. enterica serovar Arizonae, to induce the transep-
ithelial migration of PMNLs has revealed that strains or serovars
that induce diffuse enteritis in human beings do induce transmi-
gration, whereas those that do not induce diffuse enteritis in hu-
man beings do not (740). In contrast, the ability to enter fully
differentiated T84 cells does not differentiate between strains or
serovars that induce diffuse enteritis and those which do not
(740). The Salmonella-induced transepithelial migration of
PMNLs is not attributable to the classical pathway by which an
enteropathogenic bacterium induces the migration of PMNLs,
because even though the infected cells release the potent PMNL-
chemotactic IL-8, this cytokine is not only responsible for the
Salmonella-induced transepithelial transmigration of PMNLs,
suggesting the involvement of a chemotactic factor(s) (739, 741).
Analyzing the phenomenon, McCormick et al. (742) provided
evidence that the primary role for basolateral secretion of IL-8 by
the fully differentiated T84 cells is the recruitment of PMNLs
through the matrix to the subepithelial space, rather than direct-
ing the final movement of PMNLs across the epithelium. In fully
differentiated T84 cell monolayers, S. Typhimurium recruits
PMNLs and induces their transepithelial migration by the coordi-
nated production of two potent PMNL chemoattractants, the
basolateral IL-8 and the apical hepoxilin A3 an eicosanoid lipid
(741, 743, 744). The S. Typhimurium effector protein SipA has
been found to be both necessary and sufficient for the epithelial
transmigration of PMNLs in fully differentiated T84 monolayers
(745). In particular, SipA facilitates the apical release of HXA3 via
an increase in the protein expression of the ATP-binding cassette
transporter multidrug resistance-associated protein 2 (MRP2)
(743). Mechanistically, SipA activates ezrin, a member of the ERM
protein family that regulates the localization and functionality of
intestinal apical transporters, including NHE-3, and CFTR and
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MRP2 in polarized epithelial cells, in turn increasing the apical
expression of MRP2, which controls the release of HXA3 and
hence the induction of the transepithelial migration of PMNLs
(746). In addition, SipA, by initiating an ADP-ribosylation fac-
tor-6- and phospholipase D-dependent lipid-signaling cascade,
directs the specific activation of PKC-� and subsequent PMNL
migration (747).

The mucus layer present at the apical domain of fully differen-
tiated, mucin-secreting HT29-MTX cells creates a barrier against
S. Typhimurium cell invasion (748). Chloride secretion induced
in fully differentiated, mucin-secreting HT29-MTX cells results in
the shedding of the mucus gel covering the apical cell domain and
a reduction in mucus gel density and barrier properties, which in
turn limits the innate defense mechanism against S. Typhimurium
invasion (749).

hBD-2, but not hBD-1, is upregulated after S. Enteritidis, S.
Typhimurium, S. Typhi, or S. Dublin infection of undifferentiated
Caco-2 cells (750, 751) through the action of the filament struc-
tural FliC protein, which, after binding to membrane-associated
gangliosides (752), increases the binding of NF-�B to hBD-2 gene
promoter sequences (750, 753). The secretory leukocyte protei-
nase inhibitor expressed by fully differentiated Caco2-BBe clone
cells, T84 cells, and the HT29-Cl.19A cell subpopulation in pro-
inflammatory situations exerts an antibacterial activity against S.
Typhimurium (754). The number of viable, internalized S. Typhi-
murium bacteria in undifferentiated Caco2 cells stably transfected
with the CARD15/NOD2 expression plasmid is lower than that in
untransfected Caco2 cells or Caco2 cells transfected with a mock
transfectant (755).

V. cholerae. V. cholerae is thought to be a prototypical nonin-
flammatory enteric pathogen, although innate immune responses
such as the production of proinflammatory cytokines and expres-
sion of bactericidal proteins have been reported (401) Moreover,
how the adaptive immune response to cholera mediates protec-
tion against subsequent disease is unknown. V. cholerae induces
the production of IL-8 in fully differentiated T84 cells (756) (Table
6). Purified flagella and secreted flagellin proteins, FlaC and FlaD,
of V. cholerae induce IL-8 production via TLR5 in undifferentiated
parental HT-29 cells (757). The flagellin-induced TLR5-depen-
dent IL-8 production in fully differentiated T84 cells develops
through the activation of MAPKs and NF-�B (758). Upregulation
of IL-1�, IL-1�, TNF-�, IL-8, and MCP-1 has been found in V.
cholerae-infected fully differentiated T84 cells, whereas a striking
dissimilarity in cytokine expression was observed in infected fully
differentiated Caco-2 cells (759). The increased paracellular per-
meability and production of IL-8 and TNF-� in V. cholerae-in-
fected fully differentiated T84 cells have been found to be triggered
by the V. cholerae protease PrtV and V. cholerae cytolysin (VCC)
(760).

The appearance of large intracellular vacuoles displaying the
hallmarks of autophagosomes and the induced autophagy in epi-
thelial cells, including undifferentiated Caco-2 cells, intoxicated
with the hemolytic exotoxin known as VCC are cell survival re-
sponses, since inhibiting autophagy reduces the survival of VVC-
intoxicated cells (761). Cholix toxin, a V. cholerae ADP-ribosylat-
ing cytotoxin, which utilizes eukaryotic elongation factor 2 as a
substrate, promotes caspase-dependent apoptosis in HeLa cells
but not in Caco-2 cells (762).

CT transcriptionally downregulates the expression of AMPs
LL-37 and HBD-1 in fully differentiated Caco-2 cells by activating

protein kinase A, Erk1/2 MAPK, and Cox-2 downstream of cAMP
accumulation (574).

The chitin-binding protein GbpA of V. cholerae has been found
to be responsible for NF-�B-dependent upregulation of the
MUC2, MUC3, and MUC5AC genes in a mucus-secreting HT-29
cell line (763).

Enterovirulent E. coli. (i) EIEC. Infection of Caco-2 and T84
cells with EIEC results in the activation of IKK� and IKK� and
increases NF-�B DNA-binding activity (705) (Table 6). Infection
of undifferentiated Caco-2 cells and of fully differentiated T84
cells with EIEC results in the coordinate expression and upregu-
lation of IL-8, MCP-1, GM-CSF, and TNF-� (703) and in the
upregulation of iNOS mRNA and protein expression and NO pro-
duction (707). IKK� and NF-�B activation was observed in un-
differentiated Caco-2 cells in response to EIEC infection (764).
The EIEC-induced expression of iNOS, and consequently of
COX-2, is accompanied by increased basal and stimulated chlo-
ride secretion (672, 765). Reduction of endogenous MUC17 in
undifferentiated Caco-2 cells is associated with enhanced bacterial
invasion in response to exposure to EIEC infection (765). Moreno
et al. (766) compared the innate and adaptive immune responses
to EIEC and S. flexneri infection. EIEC triggered DC activation to
produce IL-10, IL-12, and TNF-�, whereas S. flexneri induced
only the production of TNF-�. Unlike S. flexneri, EIEC markedly
increased the expression of TLR4 and TLR5 in DCs and dimin-
ished the expression of costimulatory molecules that may cooper-
ate to inhibit CD4� T-lymphocyte proliferation.

(ii) AIEC. AIEC strains induce a fimA-dependent basolateral
IL-8 secretion in fully differentiated T84 cells (454). A flagellum-
dependent AIEC O83:H1-induced basolateral secretion of IL-8
and CCL20 has been observed in fully differentiated Caco-2BBe
clone cells and T84 cells (449). Moreover, AIEC strains O83:H1
and LF82 both stimulate the transepithelial migration of DCs and
PMNLs in fully differentiated Caco-2BBe clone cells and T84 cells
(449). Infection of fully differentiated Caco-2BBe clone cells with
EIEC strains LF82, O83, and UM146 results in the suppression of
STAT1 signal transduction, suggesting a novel mechanism by
which EIEC evades host immune responses to the infection (767).

The nucleotide-binding oligomerization domain containing 1
gene encodes the pathogen-sensing NOD1 pattern recognition
receptor, leading to downstream responses characteristic of innate
immunity. Nod1 protein has been found to be produced in fully
differentiated Caco-2 cells after invasion by AIEC strain LF82,
suggesting that the infected cell engages a transcriptional activa-
tion of the gene (768).

(iii) EPEC. Activation of NF-�B by tEPEC in fully differentiated
T84 cells leads in turn to IL-8 transcription (769) (Table 6). The
tEPEC flagellin FliC promotes the secretion of IL-8 from fully
differentiated T84 cells by activating Erk1/2, p38, and JNK MAPKs
(770). tEPEC flagellin triggers the secretion of IL-8 from fully
differentiated Caco-2 and T84 cells, to a greater extent as a result
of basolateral infection than as a result of apical infection (771). In
fully differentiated Caco-2 cells, the flagella of tEPEC induce both
early and late activation of IL-8, MCP-1, macrophage inflamma-
tory protein 3� (MIP-3�), and hBD-2, accompanied by MAPK
and NF-�B activation (772). PKC is activated in tEPEC-infected
fully differentiated T84 cells (773), and the tEPEC-induced NF-�B
activation that upregulates IL-8 expression in fully differentiated
Caco-2 cells develops as a result of PKC-
 signaling activation
(774). Epidermal growth factor receptor plays a role in tEPEC-
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induced Erk1/2 MAPK activation and IL-8 production in fully
differentiated Caco-2 cells (775). A combination of bacterial ago-
nists, including flagella, LPS, BFP, EspA, and EspC, has been
found to be necessary for the production of the IL-8 and CCL20
proteins in fully differentiated Caco-2 cells (776). Following infec-
tion of Caco-2 cells, but not of T84 cells, IL-8 secretion and MAPK
activation are inhibited by a mechanism dependent on the deliv-
ery of T3SS effectors, suggesting that some translocated bacterial
effectors suppress inflammatory responses (771). The T3SS effec-
tors NleE (non-locus, LEE-encoded effector), NleH1, and NleC
prevent NF-�B nuclear translocation and suppress p38 MAPK
activation, thus suppressing IL-8 release in fully differentiated
Caco-2 cells (777). tEPEC inhibits iNOS expression at the tran-
scriptional level, by both direct and indirect mechanisms, and also
at posttranscriptional levels, several of which are related to the
inhibition of NF-�B (778). In contrast, the tEPEC OMPs upregu-
late iNOS, induce nitrite production, and activate NF-�B and
MAPKs in fully differentiated Caco-2 cells (779). Moreover,
tEPEC induces caspase-dependent host cell death in fully differ-
entiated Caco-2 and T84 cells (695, 780).

In fully differentiated T84 cells, tEPEC triggers an eaeB-depen-
dent transepithelial migration of PMNLs (781). Without affecting
TJ organization, the transepithelial migration of PMNLs across
fully differentiated T84 cells (694) is promoted by the tEPEC T3SS
effector NleE activating Erk1/2 MAPK and NF-�B (714).

The flagellum of aEPEC plays a role in adhesion and in the
aEPEC-induced early, but not late, IL-8 production in fully differ-
entiated Caco-2 cells (488, 782). aEPEC adhering to fully differ-
entiated, mucin-secreting HT29-MTX cells induces mucus hyper-
secretion, whereas tEPEC does not (783). The mucins produced
are the secreted mucins MUC2 and MUC5AC and the membrane-
bound mucins MUC3 and MUC4. The transcription of the
MUC5AC and MUC4 genes was transiently upregulated after
aEPEC infection. aEPEC exploits the membrane-bound mucins
for its growth, whereas tEPEC does not.

(iv) EHEC. Infection of fully differentiated Caco-2 cells with
EHEC activated p38 and Erk1/2 MAPKs and induced the nuclear
translocation of NF-�B and AP-1-binding activity for increasing
IL-8 mRNA and the production of the protein (784, 785) (Table
6). The MAPK and NF-�B pathways leading to IL-8 secretion are
also activated by isolated EHEC H7 flagellin added to either the
apical or basolateral surface of fully differentiated Caco-2 cells
(784). The EHEC H7 flagellin-induced production of IL-8 in fully
differentiated Caco-2 cells develops together with the phosphor-
ylation of the epidermal growth factor receptor (786). Moreover,
EHEC expressing HCP induces significant release of IL-8 and
TNF-�, but not of IL-2, IL-6, or IL-10, in fully differentiated T84
cells via Erk1/2, p38, and JNK MAPK signaling activation (787).
tEHEC is able to downregulate IFN-	-induced iNOS mRNA ex-
pression and NO production in fully differentiated Caco-2 and
T84 cells by suppressing the STAT-1-dependent transcription of
the gene encoding iNOS following activation of the enzyme heme
oxygenase 1 (208, 788). In addition, it has been observed that the
adhesive factor of EHEC OmpA induces IL-1, IL-10, and IL-12
cytokine production by DCs and the DC transepithelial migration
across fully differentiated Caco-2 cell monolayers (789). In fully
differentiated Caco-2 cells infected with EHEC, the observed
tEHEC-induced downregulation of IFN-	-induced iNOS mRNA
expression and NO production (208, 788, 790) results from the
action of its Stx in inhibiting the IFN-	-mediated proinflamma-

tory pathway by decreasing Stat-1 tyrosine phosphorylation
(791). EHEC Stx also functions as a modulator of the innate im-
mune response of human enterocytes, since Stx inhibits the NF-
�B-dependent CCL20 and IL-8 gene transcription and chemokine
production via a PI3K/Akt-dependent signaling pathway in fully
differentiated T84 cells (792). Other cell responses and deleterious
cellular effects resulting from the action of Stxs on STEC have
been observed in fully differentiated intestinal cells. Proinflamma-
tory cytokine mRNAs, including IL-8 mRNA, are induced by Stx1
and Stx2 in fully differentiated Caco-2 cells (793).

(v) EAEC. EAEC strains have been shown to cause the release of
IL-8 from fully differentiated Caco-2 cells (794), an effect medi-
ated by the flagella and flagellin protein (795) and involving p38
MAPK signaling via activation of the TLR5 receptor located in the
basolateral domain of the cells (796, 797) (Table 6). In addition,
plasmid-encoded factors may play a role in EAEC IL-8 induction
(798). In EAEC-infected fully differentiated T84 cells, the upregu-
lation of genes encoding IL-8, IL-6, TNF-�, CXCL1, CXCL3, in-
tercellular adhesion molecule 1 (ICAM-1), GM-CSF, and IL-1�
has been observed, as a result of the presence of AAF adhesin
(799). In addition, two proinflammatory effects triggered by
EAEC flagella or AAF adhesin have been shown to be induced in
undifferentiated Caco-2 cells (776).

The migration of PMNLs across fully differentiated T84 cell
monolayers infected with EAEC strain 042 is mediated by a host
cell signaling cascade involving the 12/15-LOX pathway and leads
to apical secretion of an arachidonic acid-derived lipid PMN che-
moattractant (800). Moreover, the transepithelial migration of
PLMNs in turn promotes the enhanced attachment of EAEC 042
to T84 cells (800).

(vi) Afa/Dr DAEC. Flagellated and nonflagellated Afa/
DrDAF/CEACAMs DAEC strains were able to induce the production of
IL-8 in fully differentiated Caco-2 and T84 cells, and flagella isolated
from flagellated DAEC recognize the basolateral TLR5 and induce the
production of IL-8 (801, 802) (Table 6). In fully differentiated Caco-2
cells, motile Afa-positive DAEC strains isolated from patients with
diarrhea induce a greater TLR5-dependent IL-8 secretion than strains
isolated from healthy individuals (803). To explain the phenomenon,
the authors speculated that an additional virulence factor other than
Afa adhesins and motility causes the loosening of TJs that allows
flagellin to reach TLR5 located on the basolateral side of the epi-
thelium. It may be possible that the phenomenon results from the
action of the Sat toxin opening the TJs in fully differentiated Caco-
2/TC7 cells (701). Afa/DrDAF/CEACAMs DAEC strains expressing Dr
adhesin are able to induce cell signaling and a proinflammatory
response at a distance from bacteria adhering to the intestinal
brush border. Indeed, NE-induced release of Dr fimbriae from
Afa/DrDAF/CEACAMs DAEC has been observed. This is due to the
differential induction of the genes draC, which encodes the usher,
and draE, which encodes the major fimbrial subunit (804). Like
for Afa/DrDAF/CEACAMs DAEC apically infecting intestinal cells,
the released Dr fimbriae are able to induce hDAF-dependent
phosphorylation of Erk1/2 MAPK and the production of IL-8 in
fully differentiated Caco-2/TC7 cells (805). It is noteworthy that
non-Afa/Dr DAEC strains are also able to induce IL-8 production
in fully differentiated T84 cells (806).

By use of their Dr or F1845 adhesins, after recognizing the
brush border hDAF, Afa/DrDAF/CEACAMs DAEC strains promote
the epithelial transmigration of PMNLs across fully differentiated
T84 monolayers accompanied by the basolateral secretion of IL-8
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through a mechanism involving activation of Erk1/2, p38, and
JNK MAPKs (807). F1845-induced transepithelial migration of
PMNLs triggers the synthesis of TNF-� and IL-1�, which in turn
promotes the upregulation of brush border-associated hDAF, in-
creasing the adhesion of Afa/DrDAF/CEACAMs DAEC to the brush
border, and abnormal expression of hDAF at the basolateral do-
main of the fully differentiated T84 cells (808). PMNLs that have
transmigrated across fully differentiated T84 monolayers show an
elevated global caspase activity, indicative of apoptosis, and a re-
duced capacity to phagocytose Afa/DrDAF/CEACAMs DAEC (809).
Neutrophil extracellular traps (NETs) are composed of a nuclear
DNA backbone associated with antimicrobial peptides, histones,
and proteases (810–812). Wild-type Afa/DrDAF/CEACAMs DAEC
strain C1845 infecting the human myeloid cell line PLB-985,
which differentiates into fully mature neutrophils, promotes the
projection of NETs which entrap and kill bacteria (813). This
PMNL response has a cytotoxic consequence for intestinal cells.
Indeed, the induced NETs, by contact with fully differentiated
Caco-2/TC7 cells, promote a dramatic disruption of the brush
border F-actin cytoskeleton, which can be considered a new
Afa/Dr DAECDAF/CEACAMs cell-deleterious effect occurring in an
inflammatory situation (813). Upregulation of the inflammation-
associated molecule MICA, a distant homologue of major histo-
compatibility complex (MHC) class I molecules expressed in the
normal intestinal epithelium (814) which acts as a ligand of the
NKG2D-activating receptor (815–817), has been found in fully
differentiated Caco-2 cells infected by Afa/DrDAF/CEACAMs DAEC
strains expressing AfaE-III adhesin, an effect mediated by the spe-
cific interaction between the bacterial adhesin and hDAF (818).
Higher levels of MICA have been found on the surface of epithelial
cells in colonic biopsy specimens from Crohn’s disease patients
than in those from controls (819).

Adhesion of Afa/DrDAF/CEACAMs DAEC expressing F1845 ad-
hesin at the brush border of fully differentiated Caco-2 cells trig-
gers an antibacterial cell response, since at a late time of adhesion
a dramatic bacterial cell alteration occurs in the adhering bacteria,
indicating an epithelial cell-induced bacterial lysis (54), a phe-
nomenon that correlates with the cell differentiation-dependent
expression of AMPs by Caco-2 cells (54, 143).

Afa/DrDAF/CEACAMs DAEC bearing the F1845 adhesin induces
the production of bioactive vascular endothelial growth factor
(VEGF) in fully differentiated T84 cells as a result of the recogni-
tion of hDAF and subsequent Src protein kinase activation up-
stream of the activation of the Erk1/2 and Akt signaling pathways
(820). The Afa/Dr DAECDAF/CEACAMs expressing F1845 adhesin
induces the upregulation of hypoxia-induced factor 1� (HIF-1�),
which triggers the production of IL-8 and VEGF in fully differen-
tiated T84 cells. Concomitantly, infected fully differentiated T84
cells display a loss of E-cadherin and cytokeratin 18 and a rise in
fibronectin, indicating that the bacteria may induce an epithelial-
to-mesenchymal transition-like phenotype (821). This suggests
that Afa/DrDAF/CEACAMs DAEC could play a role in angiogenesis,
inflammation, and some aspects of intestinal cancer initiation
(822). The same HIF-1� upregulation and activation of VEGF/
VEGF receptor (VEGFR) signaling has been observed in fully dif-
ferentiated T84 cells infected with the AIEC strain LF82 (823).

Interaction with Caco-2-Derived M-Like Cells

In the case of enteroinvasive pathogens, experimental data indi-
cate that at least during the early stages of infection, the M cells of

the follicle-associated epithelium transport the pathogens (221,
222). In the coculture model of fully differentiated Caco-2 cells
and murine lymphocytes from Peyer’s patches, Y. enterocolitica
does not adhere to the apical membrane of fully differentiated cells
but does adhere to and is internalized by M-like cells expressing �1
integrins at their apical surface, which are recognized by the inva-
sin of Yersinia (824). After internalization, the bacteria are local-
ized within LAMP-1-negative vacuoles. Similar binding of Y. en-
terocolitica to M-like cells, but not to fully differentiated, brush
border-expressing cells, has been observed using the coculture
system of clones of fully differentiated Caco-2 cl1 cells and freshly
isolated human blood lymphocytes (227).

At least at the early stage of infection, M cells of the follicle-
associated epithelium transport Shigella (222). Surprisingly, de-
spite the establishment of coculture system involving fully differ-
entiated Caco-2 cells and freshly isolated BALB/c mouse Peyer’s
patch lymphocytes or the human lymphoblast-like Raji B cell line
mimicking M cells, there has been no published description of the
interaction between S. flexneri and the M cell-like cells.

Using the coculture model of parental fully differentiated
Caco-2 cells and freshly isolated mouse Peyer’s patch lymphocytes
that mimics the follicle-associated epithelium, Daniels et al. (825)
concluded that L. monocytogenes does not require or specifically
use M cells to cross the gut. In contrast, in an coculture model
composed of fully differentiated Caco-2BBe 1 clone cells with mu-
rine Peyer’s patch lymphocytes, transcytosis of L. monocytogenes
production has been observed independently of bacterial hemo-
lysin and internalin (826).

In addition, V. cholerae binding and penetration, the presence
of bacteria in an intraepithelial pocket containing a lymphocyte,
and bacterial translocation from human M-like cells have been
visualized using the coculture model of M-like cells composed of
isolated BALB/c mouse PP lymphocytes and parental fully differ-
entiated Caco-2 cells or Caco-2 cl1 clone cells (223, 224). The
participation of the secretory IgA receptor colocalizing with the
CT receptor ganglioside GM1 in the uptake of V. cholerae has been
demonstrated using the coculture model of M-like cells composed
of Raji cells, human B lymphocytes, and parental, fully differenti-
ated Caco-2 cells (559, 827). CT remains in the proximity of the
bacteria as they are trafficked through the M-like cells (559).
Moreover, V. cholerae binding and transcytosis in M-like cells
have been found to depend on bacterial viability, since heat treat-
ment of the bacteria causes a loss of binding to GM1 that is corre-
lated with a significant decrease in uptake and transcytosis (559).
Importantly, it has been noted that V. cholerae bacteria are found
only attached to the brush border of fully differentiated Caco-2
cells (223, 224), and intracellular V. cholerae has never been ob-
served in fully differentiated cells, whether they are adjacent to
M-like cells or not (224, 559).

Salmonella translocation has been observed in the coculture
system of parental Caco-2 cells and the human lymphoblast-like
Raji B cell line mimicking M cells (828) independently of factors
encoded by T3SS-1 and T3SS-2 (829) and involving the host cell
membrane-associated caveolin 1 (830).

Using the in vitro model composed of fully differentiated Caco-
2-cl1 cells cocultured with the Raji B cell line, Chassaing et al.
(831) have observed that AIEC LF82 bacteria interact with M-like
cells and that large numbers of internalized bacteria are translo-
cated, a phenomenon that is enhanced when the bacteria are
grown in the presence of sodium cholate (832).
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Transport of tEPEC occurs at similarly low levels across both
native fully differentiated Caco-2 and M-like Caco-2/Raji-cocul-
tured monolayers (828). Since translocation rates are markedly
higher for tEPEC lacking either functional T3SS or the effector
protein EspF, it is conceivable that T3SS effectors downregulate
tEPEC translocation.

Although EHEC translocates at a low level in fully differentiated
Caco-2-cl1 monolayers, it shows a high level of translocation in
the in vitro M cell-like model composed of fully differentiated
Caco-2-cl1 cells cocultured with the Raji B cell line (833).

CONCLUDING REMARKS

Our understanding of how enterovirulent bacteria cause disease
by creating structural and functional dysfunctions has advanced
significantly in recent years. Moreover, this increased knowledge
may permit research leading to innovative antibacterial therapies.
We have seen in this review that human enterovirulent bacteria
have evolved several sophisticated mechanisms to subvert the
host’s intestinal cell machinery that result in structural and func-
tional lesions within the human intestinal epithelial barrier. Ad-
vances in the understanding of the virulence mechanisms of en-
teric bacterial pathogens have been made using fully differentiated
colon carcinoma cells in culture; however, it should not be forgot-
ten that the colon cancer cell lines, subpopulations, and clone cells
have several drawbacks. Although they physically and functionally
mimic a human intestinal barrier in culture, they cannot be re-
garded as “normal” since they originate from intestinal cancer
cells. Moreover, these cell lines, subpopulations, and clones also
display grossly altered ploidy (834–836) and may have changes in
several cellular signaling pathways as a consequence of the cancer-
ous nature of the parental cells. For example, the cell signaling-
controlled shedding of intestinal polarized epithelial cells that oc-
curs in vivo during the renewal of the intestinal epithelium has
never been observed in fully differentiated colon cancer cells
forming a monolayer. Only a recent report describes the extrusion
of cells from a fully differentiated T84 cell monolayer induced by
the caspase-1-dependent action of nigericine (837). It is notewor-
thy that the extrusion of cells from fully differentiated colon can-
cer cell monolayers by enterovirulent bacteria, which is known to
induce caspase-dependent cell death, currently has not been doc-
umented. In addition, it should be noted that it is difficult to carry
out efficient DNA/small interfering RNA (siRNA) transfections in
fully differentiated colon cancer cells. Indeed, it is difficult to
achieve the complete silencing of the genes of interest in these cells
by means of siRNA transfection (88). Attempts have been made to
carry out transfections with some of these cell lines by transfecting
the cells at an undifferentiated stage and then subculturing them
to obtain transfected, postconfluent, fully differentiated cells. In
many cases, these attempts have been unsatisfactory, since the
functional cell differentiation process has been found to have been
altered. Moreover, the difficulty of transfecting cDNA into these
cell lines has led researchers to use cells that are more permissive to
transfection in order to study the role of a host cell protein tar-
geted by a bacterial virulence factor. Convincing experiments have
been conducted using the transfection-permissive HeLa and Chi-
nese hamster ovary epithelial cells or fibroblast NIH 3T3 cells.

Following experiments with cultured human epithelial cells,
dissecting the different mechanisms of microbial pathogenesis re-
quires the identification of relevant animal models of enteric in-
fection that fulfill some criteria, including use of a host-adapted

pathogen and well-defined clinical/pathological parameters that
serve as predictable measures of disease. The most successful ex-
amples are the animal-pathogenic EPEC- or EHEC-like C. roden-
tium and RDEC-1 strains inducing A/E lesions at the brush border
of enterocytes. However, due to highest human specificity, the
pathogenesis of several enterovirulent bacteria, such as Afa/
DrDAF/CEACAMs DAEC, could not be investigated in infectious an-
imal models. Human intestinal in vitro organ culture (IVOC) rep-
resents a valuable tool for investigation of the mechanisms of
virulence of enterovirulent bacteria in an ex vivo human situation.
Moreover, IVOCs are important in particular for examining the
mechanisms of pathogenesis developed by human enteric bacte-
rial and viral pathogens showing highest human specificity. Vari-
ous IVOC systems of human intestinal cells have been established.
In a recent and complete review, Fang et al. (838) have examined
the different IVOC systems that have been developed and in par-
ticular those that constitute a polarized IVOC providing apical
exposure to simulate an ex vivo infection route closely mimicking
the in vivo infection route that occurs in the human intestine.
Phillips and coworkers have established an IVOC from pediatric
biopsy specimens of duodenum mounted in a modified Micro-
Snapwell system specifically adapted for use with 2- to 3-mm-
diameter biopsy samples. This IVOC system has been used mainly
to study the mechanisms of virulence of ETEC (839), EPEC (840–
851), EHEC (852–857), EAEC (507, 858), and Salmonella (392)
and the action of Stx toxins (641). Other IVOCs have been used
for studies on C. jejuni (859), EPEC (692, 860, 861), EAEC (645,
862–864), and Shigella (865) pathogenesis. Moreover, IVOCs
from colonic biopsy specimens from CD patients have been used
to show the adhesion of AIEC (444, 866). Recently, other IVOCs
have also been described, composed of specimens of human colon
taken downstream of the tumor, allowing the study of proinflam-
matory colonic immune responses in a context of depletion of
IL-10, which regulates a complex ecosystem composed of bacteria,
the intestinal epithelial barrier, and resident colitogenic cells (867,
868). Specimens of mucosa and submucosa, either cocultured or
cultured alone, have been used to investigate the effect of Clostrid-
ium difficile toxin B on IL-8 production via the IL-1�-dependent
pathway (869) and the activation of the VIPergic neurons (870).
Recently, human tissue preparations consisting of separated se-
rosa and circular muscle have been used to culture the mucosal
and submucosal fragments. From this model, and given that the
enteric nervous system is a potent modulator of intestinal epithe-
lial barrier functions (30), knowledge of the role of enteric neu-
rons in intestinal Shigella pathogenesis is beginning to emerge
(655, 871, 872). Moreover, two coculture models, consisting of
human submucosa containing the submucosal neuronal network
and human fully differentiated, mucus-secreting HT29-Cl.16E or
enterocyte-like Caco-2 monolayers, have been described. These
models have been used to investigate the effects of submucosal
neuron activation by electrical field stimulation on cell prolifera-
tion (239) and on the VIPergic neuronal pathway controlling the
paracellular permeability and structural organization of TJs (70)
and the PKA-independent and MAPK-dependent IL-8 produc-
tion (240). In addition, an interesting in vitro three-dimensional
organoid culture using intestinal stem cells has also been devel-
oped (873, 874).

The interest of IVOCs is that they provide an entire intestinal
system comprising the four major phenotypes of cells lining the
intestinal epithelial barrier. The interest of cultured human intes-
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tinal fully differentiated colon cancer cell lines, subpopulations,
and clone cells is that they provide useful models of each of the
intestinal cell phenotypes. Experiments combining a human
IVOC and a cultured human intestinal fully differentiated colon
cancer cell line, subpopulation, or clone cells provide the most
reliable and convincing insights into the roles of particular viru-
lence factors in the virulence mechanisms of human enteroviru-
lent bacteria. However, IOVCs are difficult to obtain for labora-
tory experimentation, because they require a close link between
the research laboratory and a hospital department of gastrointes-
tinal tract surgery and surgical pathology department. In addition,
IOVCs can be used only for a limited period in culture and there-
fore seem to be more appropriate for investigating events that
occur soon after infection in normal intestinal cells than for inves-
tigating later cellular events.
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